
Journal of Computer Applications and Research, Volume 1, No 1, 2020

Analysis and Validation of Software Developement In Distributed

Environment

Yin Nyein Aye

 Faculty of Information Science

University of Computer Studies

(Taunggyi)

yinnyeinaye @ucstgi.edu.mm

Hsu Mon Kyi

Faculty of Computer Science

University of Computer Studies

(Taunggyi)

hsumonkyi@ ucstgi.edu.mm

Chan Myae Aye

Faculty of Information Science

University of Computer Studies

(Taunggyi)

chanmyaeaye@ ucstgi.edu.mm

Abstract

 Software development is a collaborative process

where teams of developers work together in order to

complete tasks. Developers have to make decisions

based on data which can be modified by other

developers. To prevent wrong decisions, the system has

to make sure that the data is consistent between

developers and modifications on one developer are

propagated to other developers. Developers can

download the source code files that are stored in cloud

storage server. And then they modify their source code

and upload these update source code file to the cloud

storage server to see others developers. However, they

can read others developers' source code file but they

can't write or modify it. Petri Net Model has been

presented to compute control flow complexity for this

system. The result can be shown that the nine metric

values are upward trends when the number of

developers increases in CSCW. This paper focuses on

the complexity of proposed consistency control model by

using Petri net-based representation. Moreover, an

effort has been made to evaluate the control flow

complexity measure in terms of Weyuker's properties

that is fulfilled by any complexity measure to be suitable

for this system.

Keywords— Software Development, CSCW,

Complexity, Petri Net

1. Introduction

Collaborative work (CW) means is used mainly in the

business settings which are known as computer

supported collaborative work (CSCW) to accomplish the

software productivity [4]. Nowadays, the

implementation of CSCW on cloud is a challenging

issue among researchers in various fields such as

artificial intelligence, computer science, network

communication, distributed systems and so on. CSCW

applications may have a huge variation in requirements

for reliability and consistency.

Eric Brewer's CAP Theorem [15] says that in a

distributed database system, Consistency, Availability

and Partition tolerance. In CAP theorem is described

only two of the three properties consistency, availability

and tolerance to network partitions can be achieved at

the same time [1]. Thus, cloud developers have to

choose a datastore according to their application

requirements. Lowering the consistency level also has

often the advantage of better performance and response

times than strong consistency. However, choosing a

lower level of consistency poses uncertainties for many

applications. Maintaining consistency within a single

database node is relatively easy for most databases. The

real problems start to maintain consistency between

multiple database servers [11]. Collaborative Editing

allows people to work simultaneous on the same

document or source base (e.g., Google Docs, Version

control, Wiki’s). The main functionality of collaborative

editing system is to detect conflict during editing and to

track the history of changes. Traditionally these systems

work with strong consistency. Most parts of the

document which are frequently updated by several users

would be handled by strong consistency guarantees to

avoid conflicts all together. If a client makes a write

operation on server A, we do not make sure that this is

consistent with server B, or C, or D. Therefore,

distributed shared systems are designed as different

consistency models to achieve high performance of

operations on shared data.

Software development requires enforcing consistency

for providing each individual with the modifications

performed by all other developers. Two developers edit

a document at the same time and send their changes to

the application. To avoid lost updates, Monotonic write

consistency model is used for a collection of concurrent

processes. By using monotonic write consistency, it is

shown that a write operation by a developer on a source

code file is completed before any successive write

operation on it. If there are two consecutive writes by

the developers and a source code file has already written

the value of the second write. The collaborative software

development is an effort to build a distributed

computing platform over the network. Therefore,

complexity for real world system is difficult to measure.

In this paper Petri net based representation is used to

measure complexity of the system based on this

concurrency control model and Weyuker’s properties to

validate the complexity. Section 2 presents literature

review, section 3 explains the types of software

development models, section 4 the target scenario for

computer supported collaborative work and section 5

describes model assumption, section 6 explains control

flow complexity metrics for collaborative work, section

7 discuss about Weyuker’s properties for this

representation. Finally, section 8 addresses the

conclusion.

46

Journal of Computer Applications and Research, Volume 1, No 1, 2020

2. Literature Review

 Process measurement can and should be used in

every phase of the process development life-cycle,

including the analysis, design, implementation, testing,

and maintenance phases. Control-Flow Complexity

(CFC) measure to analyse the degree of complexity of

this software development. Process complexity can be

defined as the degree to which a software development

is difficult to analyse, understand or explain. Nowadays,

complexity analysis has an increased importance.

Therefore, methods should be used to support the design

and redesign of processes to reduce their complexity.

The CFC can be used to analyse the complexity of

business processes, as well as workflow and Web

processes. Computer Supported Cooperative Work

(CSCW) is the study of how people use technology,

with relation to hardware and software, to work together

in shared time and space. Moreover, it aims to provide

similar improvements for ‘‘multiple individuals working

together in a conscious way in the same production

process or in different but related production processes"

[16]. Multiple views of software development are

required to keep all of the developers' view consistent

under change [17, 18]. Several systems have been

developed in order to provide better means of

communication and awareness over the actions of

others. Many distributed collaborative tools are used to

support for interaction among developers [19]. Current

research in cloud is very active in academia as well as in

industry. Most of cloud-based applications does not

require at the same level for consistency which is

required to complete the task. A variety of applications

needs for different consistency level [20, 21, 22]. M. C.

Mateus [16] proposed Vector-Field Consistency (VFC)

algorithm which relies on two distinct concepts:

location-awareness and continuous consistency model

based on client-server architecture. In this paper, an

effort has been made to evaluate the control-flow

complexity measure in terms of Weyuker’s properties.

[23, 24]

3. Types of Software Development Models

 Software development is complex and relies on

decision making. Therefore, software development

teams work on critical systems has a very structured

process with rapidly changing requirements, a less

formal, flexible process is likely to be more effective.

 In this section, software development models are

described. Each model represents a process from a

specific perspective view is shown in Table 1.

Table 1. Types of software development models

and how to apply and their advantages and

disadvantages

No. Types of

software

developme

nt models

How to

Apply

Advantag

es

Disadvantag

es

1. Water Fall

Model

Used

with

simple

and

does not

work well

projects

that

have a

defined

set of

require

ments

understan

dable

smaller

Project

for complex

projects

2. V-model Like as

water

fall but

upward

s after

the

coding

smaller

projects

unforeseen

changes/upd

ates

throughout

the software

lifecycle

3. Incremental

Model

iterativ

e and

increm

ental

develop

ment

a great

solution

for some

change

requests

projects

require more

resources,

staff and

monetary,

behind the

project

4. RAD

Model

modific

ation of

the

Increm

ental

Model

reduced

developm

ent time

and

allows for

more

customer

feedback

limited

modelling

and

planning

skills

5. Agile

Model

process

adaptab

ility

and

user

engage

ment

with

rapidly

decreases

the

amount of

time

relies on

end-user

interaction

6. Iterative

Model

relies

on

specifyi

ng and

implem

enting

individ

ual

parts of

the

softwar

e

easy to

identify

problems

early

can take

longer and

be more

costly

7. Spiral

Model

combin

es

element

s of

both

the

Iterativ

e and

Waterf

all

develop

ment

models

more

accurate

estimates

for budget

and

schedule

requires

team

members

that are

well-versed

in risk

evaluation

8. Prototype

Model

relies

on

creatin

g

prototy

reduced

time and

costs

cause user

confusion

between

prototype

and finished

47

Journal of Computer Applications and Research, Volume 1, No 1, 2020

pes of

the

softwar

e

applicat

ions or

system

softwar

e

product

can add

excessive

developmen

t time

There are most popular types of software

development models. But these models are not focus on

the complexity of process measurement. Therefore, the

case study focuses on the complexity of proposed

consistency control model by using Petri net Model. The

complexity of collaborative and teamwork processes is

connected to effects such as readability, effort,

testability, reliability and maintainability of processes.

The complexity of a process is also strongly associated

with the degree of difficulty a user has to understand and

use a process. Therefore, it is important to develop

measures to automatically identify complex

collaborative and teamwork processes.

Petri nets are a model and tool which may be

successfully combined for diverse applications such as

performance evaluation, decision support, and training

on complex systems. Petri Nets (PN) is a graphical

paradigm for the formal description of the logical

interactions among parts or of the flow of activities in

complex systems. Petri Net is a well-known model to

represent the workflow both in business activities and

computer systems. It is more concise and can express

complex parallel execution behaviours. Therefore, using

Petri Net to describe the composite and dynamic

behaviours is very suitable. The effectiveness of flow of

the system requires modelling, measurement, the

estimation of complexity, defects, process size, and

effort of testing, time, resources, and quality of service.

To achieve an effectiveness of the system, the

complexity analysis of system can be used.

4. Target Scenario for computer supported

collaborative work

The main objective of this case study is to allow all

the developers shared application states and see the

same view at the same time. Developers access the data

from their source code files and send back to update

source code file to the Server site. The requests are

divided into two classes: non-modifying operations

(reads) and modifying operations (writes). For each

developer Read: Developer issues a read request and

waits for the read to perform. Write: Developer issues a

write request and waits for the write to perform. The

developers start their jobs. Then the source code files are

modified and send back to the Server site. After getting

the synchronization from each developer, the Server site

sends back synchronization to developers. They can

compare their timestamp and get update new from other

developers' update source code file. The collaborative

software development is composed of a set of activities,

tasks or services put together to achieve the system

correctly. Therefore, complexity for real world system is

difficult to measure. Therefore, the Petri net-based

representation is used to measure complexity for this

system. In this model, the places are the activities of the

developers and the server and transitions are the

operations of the system.

 Figure1 illustrates editing and merging approach to

collaborative software development. Developer 1 edits

data (denoted by A'), Developer 2 edits data (denoted by

B') and Developer N edits data (denoted by N').

Therefore, they can modify it at the same time. After

updating, developer 1 and 2 keep their update source

code file. In distributed environment, the last edit data

(A’, B’,….., N') is sent for other developers to use. The

developer 1 can update his source code file and sends

back to server site. And also, developer 2 updates his

source code file and sends back to server site and

developer N also updates. The server site sends back

developer 1's source code file to developer 2's site and

sends back developer 2's source code file to developer

1's site and sends back to developer N' source code file

to developer 1's site and developer 2' s site. The meaning

of the symbols for target scenario 1 is shown in Table 2.

Table 2. Meaning of the Symbols for Target

Scenario

Symb

ol

Meaning

A Developer 1's Source Code File

B Developer 2's Source Code File

A’ Developer 1' Updated Source Code File

B’ Developer 2' Updated Source Code File

5. Model assumption

In this case study, assume that the developers work

concurrently and update their source code files. It can be

said that this system gives for the developers as a write

access concurrently. After updating their source code

files, the clients send synchronization to the server.

When the server gets the synchronization from the

clients, the server sends synchronization to clients as a

periodically manner. Therefore, the communication cost

for this system is O (n2).

The case study focuses on the complexity of proposed

consistency control model by using Petri net Model. The

complexity of collaborative and teamwork processes is

connected to effects such as readability, effort,

testability, reliability and maintainability of processes.

The complexity of a process is also strongly associated

with the degree of difficulty a user has to understand and

use a process. Therefore, it is important to develop

measures to automatically identify complex

collaborative and teamwork processes.

48

Journal of Computer Applications and Research, Volume 1, No 1, 2020

Developer1 Developer2Server

B A B A
Start

B A B
Update

A’ B
A’ B

Synchronize

BA

A’

SynchronizeSynchronize

B’A’

A B

A B

A’ B
A’ B BA’

Figure. 1 Target Scenario of Software Development

The Software development is a collaborative process

where teams of developers work together in order to

complete tasks. Shared documents are replicated at the

local storage of each collaborating site, so that

operations can be performed at local sites immediately

and then propagated to remote sites. The developer 1

and developer 2 start the process concurrently. At first,

they receive the old source code file and then they

update their own source code files. After updating their

source code files, they send synchronization to server to

know other developers. After the server has received

synchronization from developers, it sends again

synchronization to developers. Software development

requires getting consistency for providing each

individual with the modifications performed by all

others developers. Multiple views of software

development are required to keep all of the developers'

view consistent under change. The requests for

operations are handled by developers synchronously and

operations are performed by the shared objects

sequentially. Developers own their source code files.

And then they modify their source code files and send

back these update source code files with class file and

java file to the server to see other developers. However,

they can read other developers' source code files, but

they can't write or modify it. To illustrate, the mapping

of collaborative work on CSCW concepts onto Petri-net

Model in Figure 2 and 3 respectively.

6. Control flow complexity metrics for

collaborative work

In this section, the control flow complexity metrics

for the collaborative work discussed. Collaboration and

group work processes can become highly complex.

Process complexity means the degree to which a process

is difficult to understand. Using Petri nets-based process

modelling can be used to examine the behaviour of the

process and to calculate its performance measures.

P1

T1

P2

T2

P3

T3

P4

T4

P5

Client1

Request Download

Download

Update

Receive Updated file

Send Syn to Server

Server

Send Syn to Client

Receive Syn

Figure. 2 Petri Net Model for 1 Client

The methods and theory developed have had a

reduced industrial acceptance. According to some

research, another reason is that there is a lack of serious

validation of proposed metrics and a lack of confidence

in the measurement. To overcome this difficulty, control

flow complexity metric can be evaluated. The following

sections are the measurement of the complexity for this

system.

6.1 Count-based Measurement

 Count-based metric is a basic method to measure the

static structure complexity of this system is represented

by Petri net.

(1) Number of Places

The total number of places in Petri net-based process,

and it reflects the data exchange times in CSCW system.

According to the definition 1, it can be easily measured

by the following equation.

𝑁𝑝 = |𝑃|, (1)

where P is the place set in Petri net. The larger value of

𝑁𝑝 is the more frequent data storage, transfer or

exchange information in collaborative work.
𝑁𝑝 = |{𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5}| = 5

As mention in section, 𝑁𝑝=5 in this system.

49

Journal of Computer Applications and Research, Volume 1, No 1, 2020

P1

T1

P2

T2

P3

T3

P4

P5

P6

T5

P7

P8

T7

P9

T6

T4

Client 1 Client 2

Request Download

Update

Send Syn to Server

Send Syn to Clients

Server

Figure. 3 Petri Net Model for 2 Clients

(2) Number of Transitions

In Petri net-based process, a transition usually stands for

an operation or parallel process in collaborative system.

Hence, the number of transitions can reflect the activity

in the system. It is calculated as shown in equation (2).

𝑁𝑇 = |𝑇|, (2)

where T is the transition set in Petri net. If a process

contains more activities, it must be more complex.

Therefore, the Petri-based system with higher 𝑁𝑇 means

higher structure complexity.
𝑁𝑇 = |{𝑇1, 𝑇2, 𝑇3, 𝑇4}| = 4

𝑁𝑇 = 4 in this system.

(3) Number of Services

In a collaborative system, the number of services

directly reflects interaction complexity with the real

system. This item can be expressed as follows.

𝑁𝑆 = |𝑆| = |{𝑆}|, (3)

, where 𝑆 ⊂ 𝑇 is work set in collaborative system and 𝑠𝑖

refers the specific task used in the Petri based process.

The number of service nodes can be defined as

transition nodes. These transition nodes are T1, T2, T3,

T4 and T5. Therefore, the number of services in the

system is 5.

(4) Average Degree of Place (ADP)

The more average degree means the higher interaction

strength in this system. The average degree of place

(ADP) can be computed by the following equation.

𝐴𝐷𝑃 =
∑ deg (𝑝𝑖)𝑖

|𝑃|

=
∑ [𝑖𝑛𝑑𝑒𝑔(𝑝𝑖) + 𝑜𝑢𝑡𝑑𝑒𝑔(𝑝𝑖)]𝑖

|𝑃|

(4)

where 𝑝𝑖 ∈ 𝑃 is the ith place in Petri net and deg (𝑝𝑖) is

the degree of node corresponding place 𝑝𝑖 in system. It

can be divided into two parts: 𝑖(𝑝𝑖) and 𝑜𝑢𝑡𝑑𝑒𝑔(𝑝𝑖).

𝐴𝐷𝑃 =
∑ deg (𝑝𝑖)𝑖

|𝑃|
=

∑ [𝑖𝑛𝑑𝑒𝑔(𝑝𝑖) + 𝑜𝑢𝑡𝑑𝑒𝑔(𝑝𝑖)]𝑖

|𝑃|
=

8

5
= 1.6

For this system, ADP can be used to reflect the data

transfer complexity. The data interaction in this system

is not so complex.

(5) Average Degree of Transition (ADT)

ADT can be yielded according to equation (5)

𝐴𝐷𝑇 =
∑ deg(𝑇𝑖)𝑖

|𝑇|
=

∑ [𝑖𝑛𝑑𝑒𝑔(𝑡𝑖) + 𝑜𝑢𝑡𝑑𝑒𝑔(𝑡𝑖)]𝑖

|𝑇|

, where 𝑡𝑖 ∈𝑇 is the ith place in Petri net and deg () is

the degree of node corresponding transition in this

system.

𝐴𝐷𝑇 =
∑ deg (𝑇𝑖)𝑖

|𝑇|
=

∑ [𝑖𝑛𝑑𝑒𝑔(𝑡𝑖) + 𝑜𝑢𝑡𝑑𝑒𝑔(𝑡𝑖)]𝑖

|𝑇|

=
8

4
= 2

The 𝐴𝐷𝑇 value is greater than 2 therefore it means that

the system has parallel execution ability.

(6) Transfer Number per Service

The item of transfer number per service (i.e.TNS) can be

used as degree and it can be calculated by equation (6).

𝑇𝑁𝑆 =
|𝐹|

𝑁𝑠
=

∑ [𝑑𝑒𝑔(𝑝𝑖) + 𝑑𝑒𝑔(𝑡𝑖)]/2𝑖

𝑁𝑠

(6)

, where F is a set of directed arcs in Petri net. TNS value

of this system can be expressed as

𝑇𝑁𝑆 =
|𝐹|

𝑁𝑠
=

∑ [𝑑𝑒𝑔(𝑝𝑖) + 𝑑𝑒𝑔(𝑡𝑖)]/2𝑖

𝑁𝑠
=

8

5
= 1.6

Edges in Petri net-based system represent the data and

control logic. The numbers of transfers is used to

improve the system. The small amount means the

current system has a good structure.

(7) Cyclomatic Complexity

For this system, its cyclomatic complexity can be

calculated as below.
𝐶𝐶 = |𝐹| − |𝑃| − |𝑇| + 2 (or) 𝐶𝐶 = |𝐹| − |𝑃| −

|𝑇| + 2𝑝

 (7)

For this system, Petri Net has one start place and one

finish place that be calculated like this equation 𝐶𝐶 =
|𝐹| − |𝑃| − |𝑇| + 2. If Petri Net has two or more start

places and two or more finish places, it can be

calculated like this equation 𝐶𝐶 = |𝐹| − |𝑃| − |𝑇| + 2𝑝. 𝑝

is the number of start or finish places. For this system,

CC value is 10-6-5+2= 1. CC > 10 is usually taken as an

indicator that a process is excessively complex. In this

system, CC value is 1. Therefore, this system is not

complex.

6.2Execution Path-based Measurement

In this section address execution path-based metrics

to scale the dynamic structure of the system. During the

execution system, the computing time is determined by

the execution path in this current scenario.

(1) Execution Path

The sequence composed of place nodes and

transition nodes is called execution path. According to

the notation, these paths can be expressed as below.

𝑃𝑎𝑡ℎ1 = 𝑃1 → 𝑇1 → 𝑃2 → 𝑇2 → 𝑃3 → 𝑇3 → 𝑃4 → 𝑇
→ 𝑃5

50

Journal of Computer Applications and Research, Volume 1, No 1, 2020

The execution path for developer 1 is represented as

Path1.

(2) Execution Path Complexity

The control complexity of 𝑃𝑡 can be defined as the sum

of complexities of all places and transitions in this

system.

𝐶(𝑃𝑡)= ∑ 𝐶(𝑃𝑖) +𝑖 ∑ 𝐶(𝑇𝑗)𝑖 (8)

where 𝑃𝑖 is the place node in Path 𝑃𝑡 and 𝑡𝑖 is transition

node in this path. Therefore, the complexities of an

execution path are path 1= 11. After getting the

complexities of all execution paths, the dynamic

complexity can be scaled by average execution path

complexity (AEPC). The execution probability of each

path can be addressed by 𝑝𝑟𝑜𝑏 (𝑃𝑡𝑖)=1/𝑘, where k is

the number of execution paths. In this system =1.

Therefore, the probability of Path 1 is 1. Then, the

AEPC can be calculated as the following equation (9)

𝐴𝐸𝑃𝐶 = ∑ 𝑝𝑟𝑜𝑏 (𝑃𝑡𝑖). 𝐶(𝑃𝑡𝑖)

𝑘

𝑖=1

(9)

=𝑝𝑟𝑜𝑏(𝑃𝑡1). 𝐶(𝑃𝑡1) + ⋯ 𝑝𝑟𝑜𝑏(𝑃𝑡𝑘). 𝐶(𝑃𝑡𝑘)

Table 3 shows the complexity weights for the place

and transition nodes.

Table 3. Complexity Weights of Key Structure

Nodes

Type Type Name Basic

Structure

Weight

1

Branch

or split 2

and split 4

or join 2

and join 4

2 Iteration

While 3

repeat Until 3

for Each 3

3 Concurrency

Flow 4

join node 4

4 Service

Invocation

Service

invoking

2

Based on the above analysis for each node's

complexity, the complexity of Path 1 can be calculated

according to equation (9).
𝐶(𝑃𝑎𝑡ℎ1) = 1 × 4 + 2 × 4 + 2 × 1 = 14

The average execution path complexity based on

cognitive informatics can be computed as follows:
𝐴𝐸𝑃𝐶𝐶𝐼 = 𝑝𝑟𝑜𝑏(𝑃𝑡1). 𝐶(𝑃𝑡1)

= 1 × 14 = 14

The higher the value of path, the more complex is a

process design. The analysis results can show

reasonably the complexity feature of the system. From

the result, this system is not complex. Based on the

above analysis for each node's complexity, the

complexity of the one developer, two developers, three

developers, four developers and five developers in a

collaborative software development can be calculated

respectively according to the CFC metric equations.

 The value of the comparison of complexity metrics

is shown in Table 4. From the result in the Table 4, the

metrics values for two, three, four, five clients are

greater than one developer. So, it has more complex

control logic than one developer. The metrics value

calculated by these complexity measurement methods

can reflect the real system.

Table 4. Value of the comparison of Complexity

Metrics for Collaborative Work

No
Metrics Metric Values for Clients

 1 2 3 4 5 6 N

1. Np 5 9 13 17 21 25 4𝑘 + 1

2. NT
4 7 10 13 16 19 3𝑘 + 1

3. Ns
4 7 10 13 16 19 3𝑘 + 1

4. ADP
1.6 1.67 1.69 1.70 1.72 1.79

7𝑘 + 1

4𝑘 + 1

5. ADT
2 2.14 2.2 2.23 2.25 2.26

7𝑘 + 1

3𝑘 + 1

6. TNS
2 2.14 2.2 2.23 2.25 2.26

7𝑘 + 1

3𝑘 + 1

7. CC
1 3 5 7 9 11 2𝑘 − 1

8. AEPC 9 9 9 9 9 9 9

9. AEPCCI 14 14 14 14 14 14 14

7. Weyuker’s Properties

Weyuker properties have been applied to software

engineering and have been seriously discussed in the

literature [22-24]. Weyuker properties are a widely used

formal analysis approach and were therefore chosen for

some validation of complexity metrics for our system.

The nine categories of Weyuker to evaluate software

metrics’ properties on source code metrics. This system

proposed Weyuker' properties to validate the CFC. The

following nine Weyuker’s properties are described.
Property 1: This property requires that a good metric

should be able to classify between two different

processes such that they do not return similar

measurement results.

• Property 2: This property states that a changing

process must also cause a change to its complexity.

• Property 3: This property states that there exist two

different processes whose data types and values are

identical but whose variable names differ.

• Property 4: This property proclaims that two

processes could look identical externally but indeed be

different in their internal structure.

• Property 5: This property states that two interacting

51

Journal of Computer Applications and Research, Volume 1, No 1, 2020

processes may have zero or additional (but never

negative) complexity to that which is present in the

two initial processes themselves.

• Property 6: This property states that it is possible to

have two identical processes, but when concatenated

to a third same process, their resulting complexities

are not equal. This is an indicator that the action of

combining two processes has the potential of leading

complexity additional to the original processes.

• Property 7: This property states that the order of

statements affects complexity i.e., two identical

processes can have different complexity when the

order of their statements is changed.

• Property 8: If two processes differ only in the choice

of names for changed structures, then two processes

are equal.

• Property 9: This property states that interaction

between parts of a process cause additional positive

complexity i.e., it makes additional complexity a

requirement when two processes keep on interacting

for some time.

 7.1 Analysis of Weyuker’s properties

 The analysis of Weyuker’s properties is shown in

Table 5.

Table 5. Analysis of Weyuker’s Properties

Property Property satisfied/dissatisfied by

this system

1 Satisfied

2 Dissatisfied

3 Satisfied

4 Satisfied

5 Satisfied

6 Satisfied

7 Dissatisfied

8 Satisfied

9 Dissatisfied

Property 1: Two developers developed by two program

say A and B should not be same i.e. the number of

linearly independent paths should be vary and therefore

it satisfies the property 1.

Property 2: Our CFC measure does not follow this

property because it makes no provision for

distinguishing between programs which perform very

little computation and massive amounts of computation

for the same decision structure.

Property3: This property 3 satisfies because two

different program say A and B should be same and

therefore it satisfies the Nonuniqueness property of

Weyuker.

Property 4: Two distinct programs should not be same,

even though it should computes the same function, the

complexity of programs need not be equal and therefore

it satisfies the property 4.

Property 5: The property 5 satisfies the Monotonicity

property of Weyuker.

Property 6: Our CFC system satisfies the property 6, let

us assume three programs A, B and C, the Weight

metrics of A and B should be same and the Weight

metrics of A+B should also same as B+C.

Property 7: The property 7 does not satisfy; even

though the order of the statements has been changed, the

complexity of a program is completely independent of

the placement.

Property 8: The property 8 satisfies the Renaming

property of Weyuker i.e. if program A has been renamed

as B, program won’t change.

Property 9: The property 9does not satisfies, let us

assume that ΣCi(A) =8, ΣCi(B) =5, ΣCi(A+B)=10, then

the ΣCi(A) + ΣCi(B) < ΣCi(A+B); therefore it doesn’t

satisfies the property 9 of Weyuker.

8. Conclusion

In conclusion, Petri net Model is used to compute the

control flow complexity of the collaborative software

development on cloud. Cloud computing technology is

an effort to build a distributed computing platform over

the network. Therefore, complexity for real world

system is difficult to measure. Although the cloud

computing in real executing scenarios is very complex,

it can be represented by the Petri net Model. The use of

the Control Flow Complexity (CFC) metric allows users

to improve processes because reducing the time spent

reading and understanding processes.

 The benefits of the CFC metric is that it can be used

as a maintenance and quality metric, it gives the relative

complexity of process designs, and it is easy to apply.

Difficulties of the CFC metric include the incompetence

to measure data complexity, only control-flow

complexity is measured. The charts can be shown that

the metric values for the number of places, the number

of transitions, the number of services, average degree of

places, average degree of transitions, average degree of

services, transfer number of services are upward trends

when the number of clients increase. The cyclomatic

complexity, average execution path and average

execution path with cognitive informatics are different

results. These metric values remain steady when the

numbers of clients increase. Clients can gain access the

system with consistent state at time t. Furthermore, to

increase the confidence level of the CFC measure we

discussed about to get the suitable validation procedure

using Weyuker's nine properties. Since our system

happens to fully to satisfy six of the Weyuker's nine

properties. Therefore, it can be categorized as a good

structured one.

References

[1]D. J. Abadi, "Consistency tradeoffs in modern distributed

database system design: CAP is only part of the story", IEEE

Computer, 45(2):37–42, 2012.

[2]H. Attiya,V. Gramoli, A. Milani, "COMBINE: An

Improved Directory-Based Consistency Protocol", February

10, 2010.

52

Journal of Computer Applications and Research, Volume 1, No 1, 2020

[3]E. A. Brewer, "Towards robust distributed systems. (Invited

Talk)", Principles of Distributed Computing, Portland, Oregon,

July 2000.

[4]J. Cardoso, "Approaches to Compute Workflow

Complexity", Dagstuhl Seminar Proceedings 06291, Dagstuhl,

Germany, 16-21 July 2006.

[5]H. Zhu, M. Zhou, "Formalizing the Design of a

Collaborative System by Petri Nets", IEEE, ISSN 1062-

922X ,6-9 October 2002.

[6]S. Ramaswamy, “Petri Net based Approach for Establishing

Necessary Software Design and Testing Requirements”, IEEE

Conference on Systems, Man and Cybernetics Nashville, Oct.

2000.

[7]Chengying Mao, Kristian Bisgaard Lassena, Wil M.P. van

der Aalst, Complexity Metrics for Workflow Nets,Elsevier

August 5, 2008.

[8]Chengying Mao, Control Flow Complexity Metrics for

Petri Netbased Web Service Composition,JOURNAL OF

SOFTWARE, VOL. 5, NOVEMBER 2010. 2010 ACADEMY

PUBLISHER

doi:10.4304/jsw.5.11.1292-1299

[9]Dr George L. Benwell and Dr Stephen G. MacDonell,

Assessing The Graphical And Algorithmic Structure Of

Hierarchical Coloured Petri Net Models, September 1994

[10]J. Cardoso, "Business Process Control-Flow Complexity:

Metric, Evaluation, and Validation", International Journal of

Web Services Research, 5(2), pp 49-76, April-June 2008.

[11]J. Cardoso, "About the Complexity of Teamwork and

Collaboration Processes ", IEEE Computer Society, ISBN: 0-

7695-2050-2, pp. 218-221.

[12]J. Cardoso, "Approaches to Compute Workflow

Complexity", Dagstuhl Seminar Proceedings 06291, Dagstuhl,

Germany, 16-21 July 2006.

[13]G. Convertino, U. Farooq, M. B Rosson, J. M. Carroll,

“Old is Gold: Integrating Older Workers in CSCW”,

Proceedings of the 38th Hawaii International Conference on

System Sciences, pp. 1-10, 2005.

[14]S. Ramaswamy, "A Petri Net based Approach for

Establishing Necessary Software Design and Testing

Requirements", IEEE Conference on Systems, Man and

Cybernetics Nashville, Oct. 2000

[15]Kristian Bisgaard Lassena, Wil M.P. van der Aalst,

"Complexity Metrics for Workflow Nets", Elsevier August 5,

2008.

[16]M. Cortez Mateus, "Vector-Field Consistency for

Collaborative Software Development”, June 24 201

[17]Fetai, H. Schuldt, "Cost-Based Adaptive Concurrency

Control in the Cloud", Technical Report CS-2012-001.

[18] L. S. González, F. Ruiz, F. García, J. Cardoso, ,"Towards

Thresholds of Control Flow Complexity Measures for BPMN

models ", SAC’11, March 21-25, 2011, TaiChung, Taiwan.

ACM 978-1-4503-0113-8/11/03, Copyright 2011.

[19] S. Kumawat, A. Khunteta, "A Survey on Operational

Transformation Algorithms: Challenges, Issues and

Achievements", International Journal of Computer

Applications (0975 – 8887), Volume 3 – No.12, July 2010.

[20] H. E. Chihoub , S. Ibrahim , G. Antoniu , M. S. Perez,

"Consistency in the Cloud: When Money Does Matter",22

November 2012.

[22] Md. A. Islam, S. V. Vrbsky, "Tree-Based Consistency

Approach for Cloud Databases", IEEE, pp 401-404, November

30- December 3-2010.

[23] J.Cardoso, Control-flow Complexity Measurement of

Processes and Weyuker’s Properties,6th International

Enformatika Conference. Transactions on Enformatika,

Systems Sciences and Engineering, Vol. 8, pp. 213-218,

Budapest, Hungary, October 26-28,2005ISBN: 975-98458-7-3

[24] S.Misra,An Analysis of Weyuker's Properties with

Measurement, Theory,28 June 2010

https://www.researchgate.net/publication/286167934

53

