
Journal of Computer Applications and Research, Volume 1, No 1, 2020

Syntax Errors Investigation System for PHP Program

using Top-Down Parsing Approach

 Su Su Win Zar Zar Tun

 Faculty of Computer Science Faculty of Information Science

University of Computer Studies (Mandalay) University of Computer Studies (Taunggyi)

 susuwin.loikaw@gmail.com zarzarhtun31@gmail.com

Abstract

 Parsing is a necessary mechanism for many natural

language processing applications, such as machine

translation, question answering, knowledge extraction

and information retrieval. In this paper, we propose the

syntax investigation system which can investigate the

syntax errors in the PHP program. This system takes

each string from a PHP program as input and determines

it as a correct message or error message by using the top

down parsing approach. The predictive parser is used to

construct the parse table, which determines the action of

the input string based on the grammar production rules.

These grammar rules were reconstructed if the left

recursion rules are occurred to avoid the left recursion

problem in the top down parsing approach. As a result,

our system can reproduce the correct messages, error

messages, and location errors. It was confirmed that our

system can be useful to investigate the syntax effectively

in PHP programming language.

Keywords: Top-Down Parsing, Predictive Parser, Left

recursion.

1. Introduction

Parsing in basic terms can be described as

breaking down the sentence into its constituent words in

order to find out the grammatical type of each word or

alternatively to decompose an input into more easily

processed components. In simple terms parsing is

breaking down of sentence into atomic values. Parsing is

a process of determining how a string of terminals

(sentence) is generated from its constituents, by breaking

down of sentence into tokens. Each individual word in a

sentence is termed as token. A token of a language is a

category of its lexemes. For example, an identifier is a

token that can have lexemes, or instances, such as

id_name.

 This paper is organized as followings: We analyze the

previous efforts related to the tasks of parsing in section

2. Section 3 explains the procedure of proposed system.

Section 4 describes the top down parsing approach and

grammar rules. Section 5 explains about experimental

results. Finally, the conclusion of the paper is presented.

2. Related Work

 Ahmad AI-Taani, Mohammed Msallam and Sana

Wedian [1] presented an efficient top-down chart parser

for parsing simple Arabic sentences.

 Win Win Thant, Tin Myat Htwe and Ni Lar Thein [2]

described a context-free grammars (CFG) based top-

down parsing for Myanmar sentences.

 K.M.Azharul Hasan, AI-Mahmud, Amit Mondaal

and Amit Saha [3] presented Context-free grammars

(CFG) for Bangla language and proposed a Bangla parser

based on the grammar. Rachana Rangra and

Madhusudan [4] described the parsing techniques in

natural language processing.

 Win Win Thant, Tin Myat Htwe and Ni Lar Thein [5]

described the use of Naïve Bayes to address the task of

assigning function tags and context-free grammars

(CFG) to parse Myanmar sentences.

3. Proposed System

 Our proposed system is shown in Figure 1. The

system accepts each string from a program and

determines it as a correct message or error by using the

top down parsing approach. The accepted input stream is

parsed based on the predictive parsing program and the

parse table is created. The parse table checks the input

string based on the grammar production rules, which

were already reconstructed by eliminating the left

recursive rules. If the input string is matched with

grammar rules, the correct message is displayed as a

parse tree. If the input string is not matched with the

grammar rules, the error messages and location errors are

displayed.

23

mailto:susuwin.loikaw@gmail.com

Journal of Computer Applications and Research, Volume 1, No 1, 2020

Figure 1. Our proposed system

4. Top Down Parsing Approach

 We use the top-down parsing approach, which builds

the parse tree from top to down order. The parser reads

the sequence of input tokens from left to right, and it

builds the parse tree according to the same order. The

parser builds the parse tree from the top node of the tree

as the start nonterminal symbol and expands the leftmost

nonterminal symbol until the child node is terminal

symbol.

4.1. Producing Grammar Rules

 Firstly, we produce the grammar rules, which are

used to check the input string to confirm the error or

correct message. To produce the grammar rules, a

context-free grammar (CFG) is used to specify the

syntax of the programming language. The CFG

consists of rules (production), terminal (token),

non-terminal, and a start symbol. The grammar

rules are produced from a PHP sample program as

shown in Table 1.

Table 1. Grammar rules for a PHP sample

program
<program> <open_tag><block_stmt> <close_tag>

<open_tag> <open_tag> <?PHP |<?PHP |<open_tag> <? | <?

<close_tag> <close_tag>?> | ?>

<block_stmt> <dec_list> <stmt_list>| <stmt_list>

<dec_list> <$id_list> ;

<$id_list> <$id_list> , $ID | $ID

<stmt_list> <stmt_list> <stmt> | <stmt>

<stmt> <assign> | <write> | <if> | <for> | <while> |

<do_while>|<expression>

<assign> $ID = <expr> ;

<expr> <expr> + <term> |<expr> - <term> | <expr> /<term> |

<term>

<term> <term> * <factor> | <factor>

<factor> $ID | $NUM

<write> ECHO <write_list> ;

<write_list> $LITERAL | $ID

<if> IF (<expression>) <stmt>

<expression> <expr> <logical> <expr>

<logical> < | > | <= | >= | != | ==|+=|-=|*=|/=

<for> FOR (<assign> ; <expression> ; <counter>) {

<stmt_list> }

<while> WHILE (<expression>) { <stmt_list> }

<do_while> DO { <stmt_list> } WHILE (<expression>);

<operator> ++ | --

<counter> $ID <operator>

 Some of the grammar rules in bold face listed in table

1 include the left recursive grammar, which often poses

infinite recursion problem. Therefore, the grammar rules

are reconstructed by eliminating the left recursion rules

using the formal technique.

We can transform the grammar as follows:

Rule : Replace with

A-> β1A’| β2A’|…..| βnA’

A-> α1A’| α2A’|…..| βmA’|ε

The grammars rules in table 1 are repaired by

eliminating the left recursion rules, and the grammar

production rules are reconstructed as shown in Table 2.

Table 2. Grammar rules after eliminating the left

recursive rules
<program> <open_tag><block_stmt><close_tag>

<open_tag> <?PHP<open_tag'>| <? <open_tag'>

<open_tag'> <?PHP <open_tag'> | Ɛ

<open_tag'> <? <open_tag'> | Ɛ

<close_tag> ?> <close_tag'>

<close_tag'> ?> <close_tag'>| Ɛ

<block_stmt> <dec_list> <stmt_list>|<stmt_list>

<dec_list> <$id_list> ;

<$id_list> $ID <$id_list'>

<$id_list'> , $ID <$id_list'> |Ɛ

<stmt_list> <stmt> <stmt_list'>

<stmt_list'> <stmt> <stmt_list'> |Ɛ

<stmt> <assign> | <write> | <if> | <for> |

 <while> | <do_while>|<expression>

<assign> $ID = <expr> ;

<expr> <term> <expr'>

<expr'> + <term> <expr'> |Ɛ

<expr'> -<term> <expr'> |Ɛ

<expr'> / <term> <expr'> |Ɛ

<term> <factor> <term'>

<term'> * <factor> <term'> | Ɛ

<factor> $ID | $NUM

<write> ECHO<write_list>;|ECHO“<write_list>“;

write_list> $LITERAL | $ID

<if> IF (<expression>) <stmt>|

 IF (<expression>) <stmt> ELSE <stmt>

<expression> <expr> <logical> <expr>

<logical> < | > | <= | >= | != | ==|+=|-=|*=|/=

<for> FOR (<assign> ; <expression> ; <counter>) {

<stmt_list> }

<while> WHILE (<expression>) { <stmt_list> }

<do_while> DO { <stmt_list> } WHILE (<expression>);

 In table 2, some non-terminal symbols in bold face

have two or more distinct definitions representing two or

more possible syntactic forms. Therefore, these rules are

broken down into individual rules in table.

 Parsing

table

Accept input string

Predictive Parsing Program

 Rules

 checking

Display correct message as parse tree

 OR

Display error message and locating error

Parsing

table
Grammar

rules

24

Journal of Computer Applications and Research, Volume 1, No 1, 2020

Table 3. Produced possible grammar rules

R1.<program> <open_tag><block_stmt> <close_tag>

R2.<open_tag> <?PHP <open_tag'>

R3. <open_tag> <? <open_tag'>

R4. <open_tag'> <?PHP <open_tag'>

R5. <open_tag'> <? <open_tag'>

R6.<open_tag'> Ɛ

R7.<close_tag> ?> <close_tag'>

R8.<close_tag'> ?> <close_tag'>

R9.<close_tag'> Ɛ

R10. <block_stmt> <dec_list> <stmt_list>

R11. <block_stmt> <stmt_list>

R12.<dec_list> <$id_list> ;

R13. <$id_list> $ID <$id_list'>

R14. <$id_list'> , $ID <$id_list'>

R15.<$id_list'> Ɛ

R16. <stmt_list> <stmt> <stmt_list'>

R17. <stmt_list'> <stmt> <stmt_list'>

R18. <stmt_list'> Ɛ

R19 .<stmt> <assign>

R20. <stmt> <write>

R21. <stmt> <if>

R22. <stmt> <for>

R23. <stmt> <while>

R24. <stmt> <do_while>

R25. <stmt> <expression>

R26.<assign> $ID = <expr> ;

R27.<expr> <term> <expr'>

R28.<expr'> + <term> <expr'>

R29.<expr'> -<term> <expr'>

R30.<expr'> / <term> <expr'>

R31. <expr'> Ɛ

R32. <term> <factor> <term'>

R33. <term'> * <factor> <term'>

R34. <term'> Ɛ

R35. <factor> $ID

R36. <factor> $NUM

R37. <write> ECHO <write_list> ;

R38. <write> ECHO “<write_list> “;

R39. <write_list> $LITERAL

R40. <write_list> $ID

R41.<if> IF (<expression>) <stmt>

R42.<if> IF (<expression>) <stmt>ELSE<stmt>

R43.<expression> <expr> <logical> <expr>

R44. <logical> <

R45. <logical> >

R46. <logical> <=

R47. <logical> >=

R48. <logical> !=

R49. <logical> ==

R50. <logical> +=

R51. <logical> -=

R52. <logical> *=
R53. <logical> /=

R54. <for> FOR (<assign> ; <expression> ;

<counter>) { <stmt_list> }

R55 .<while> WHILE (<expression>){ <stmt_list> }

R56.<do_while> DO{ <stmt_list>}WHILE (<expression>);

R57 .<operator> ++

R58 .<operator> --

R59. <counter> $ID <operator>

In table 3, all possible grammar rules are produced, and

it is easier to create the parse table.

4.2. Predictive Parser

 A parser takes an input string in the form of the

sequence of tokens and produces the output in the form

of parse tree or an error message. We use the predictive

parser, which uses a stack and a parsing table to parse the

input string and generate a parse tree. To construct a

predictive parser, two functions namely FIRST () and

FOLLOW () are important. The rules for first sets are as

follows:

 1. If a is a terminal, then FIRST (A) = {‘a’}

 2. If A->є is a production rule, then add є to FIRST

(A).

 3. If A->B1 B2 B3…Xn is a production,

 1. FIRST (A) =FIRST (B1)

2. If FIRST (B1) contains then

 FIRST (A) = {FIRST (B1) - є }U{FIRST (B2)}

 3. If FIRST (Bi) contains for all i=1 to n

 , then add є to FIRST (A).

The grammar rules are constructed according to the first

set is shown in table 4.

Table 4. Grammar Rules by First Sets
FIRST (program) = {<?PHP,<?}

FIRST (open_tag)={<?PHP,<?}

FIRST(open_tag')={<?PHP,<?, Ɛ}

FIRST (close_tag)={?>}

FIRST (close_tag')={?>,Ɛ}

FIRST (block_stmt)={$ID,ECHO,IF,FOR,WHLIE,DO}

FIRST (dec_list)={$ID}

FIRST($id_list)={$ID}

FIRST($id_list')={,Ɛ}

FIRST (stmt_list)={$ID,ECHO,IF,FOR,WHLIE,DO}

FIRST (stmt_list')={$ID,ECHO,IF,FOR,WHLIE,DO,Ɛ}

FIRST (stmt)={$ID,ECHO,IF,FOR,WHLIE,DO}

FIRST (assign)={$ID}

FIRST (expr)={$ID,$NUM}

FIRST (expr')={+,-,/,Ɛ}

FIRST (term)={$ID,$NUM}

FIRST (term')={*,Ɛ}

FIRST (factor)={$ID,$NUM}

FIRST (write)={ECHO}

FIRST (write_list)={$LITERAL,$ID}

FIRS T(if)={IF}

FIRST (expression)={$ID,$NUM}

FIRST (logical)={<,>,<=,>=,!=,==,+=,-=,*=,/=}

FIRST (for)={FOR}

FIRST (while)={WHLIE}

FIRST (do_while)={DO}

FIRST (operator)={++,--}

FIRST (counter)={$ID}

The rules for follow sets are as follows:

1. FOLLOW(S) = {$} // where S is the starting

Non-Terminal

2. If X -> pYq is a production, where p, Y and q are

any grammar symbols, then everything in FIRST (q)

except Є is in FOLLOW (Y).

3. If X->pY is a production, then everything in

FOLLOW (X) is in FOLLOW (Y).

4. If X->pYq is a production and FIRST (q) contains

Є, then FOLLOW (Y) contains

 {FIRST (q) – Є} U FOLLOW (X)

 The grammar rules are constructed according to the

first set and then, the predictive parsing table is created

by using the grammar rules in table 3, grammar rules by

first sets in table 4, and grammar rules by follow sets in

table 5 to check the input token streams.

25

Journal of Computer Applications and Research, Volume 1, No 1, 2020

Table 5. Predictive Parsing Table

Non terminal
Input Token

(Terminal)

Rule

s

Error

Message

For

Non

terminal

and

 Input

Tokens

<program> <?PHP R1 Excepted

<?PHP ,

<? <program> <? R1

<open_tag> <?PHP R2 Excepted

<?PHP,

<? <open_tag> <? R3

<open_tag'> <?PHP R4 Excepted

<?PHP ,

<? <open_tag'> <? R5

<open_tag'> Ɛ R6 Skip

<close_tag> ?> R7

Excepted

?>

<open_tag'> ?> R8

Excepted

?>

<open_tag'> Ɛ R9 Skip

<block_stmt> $ID R10

Excepted

$ID,$ID,E

CHO,$IF,

FOR,

WHILE,D

O

<block_stmt> $ID
R11

<block_stmt> ECHO R11

<block_stmt> IF R11

<block_stmt> FOR R11

<block_stmt> WHLIE R11

<block_stmt> DO R11

<dec_list> $ID R12
Excepted

$ID

<$id_list> $ID R13
Excepted

$ID

<$id_list'> , R14 Excepted ,

<$id_list'> Ɛ R15 Skip

<stmt_list> $ID R16
Excepted

$ID,ECH

O,IF,

FOR,WH

LIE,DO

<stmt_list> ECHO R16

<stmt_list> IF R16

<stmt_list> FOR R16

<stmt_list> WHLIE R16

<stmt_list> DO R16

<stmt_list'> $ID R17 Excepted

$ID,ECH

O,IF,

<stmt_list'> ECHO R17

<stmt_list'> IF R17

<stmt_list'> FOR R17 Excepted

FOR,WH

LIE,DO

<stmt_list'> WHLIE R17

<stmt_list'> DO R17

<stmt_list'> Ɛ R18 Skip

<stmt> $ID R19

Excepted

$ID,ECH

O,IF,

FOR,WHI

LE,DO,$I

D,$NUM

<stmt> ECHO R20

<stmt> IF R21

<stmt> FOR R22

<stmt> WHLIE R23

<stmt> DO R24

<stmt> $ID R25

<stmt> $NUM R25

<assign> $ID R26
Excepted

$ID

<expr> $ID R27 Excepted

$ID,$NU

M
<expr> $NUM R27

<expr'> ₊ R28
Excepted

+,-, /
<expr'> ₋ R29

<expr'> / R30

<expr'> Ɛ R31 Skip

<term> $ID R32 Excepted

$ID,$NU

M
<term>

$NUM
R32

<term'> * R33
Excepted

*

<term'> Ɛ R34 Skip

<factor> $ID R35 Excepted

$ID,$NU

M
<factor> $NUM R36

<write> ECHO R38

<write_list> $LITERAL R39

<write_list> $ID R40

Excepted

$LITERA

L,$ID

<if> IF R41 Excepted

IF,IF

 <if> IF R42

<expression> $ID R43 Excepted

$ID,$NU

M
<expression> $NUM R43

<logical> < R44

Excepted

<,>,<=,>=

,!=,==,+=,

-=,*=,/=

<logical> > R45

<logical> <= R46

<logical> >= R47

<logical> != R48

<logical> == R49

<logical> += R50

<logical> -= R51

<logical> *= R52

<logical> /= R53

<for> FOR R54
Excepted

FOR

<while> WHLIE R55
Excepted

WHLIE

<do_while> DO R56
Excepted

DO

<operator> ₊₊ R57 Excepted

++,-- <operator> ₋₋ R58

<counter> $ID R59
Excepted

$ID

The predictive parser uses the parse table, grammar

rules in table 3, and the flowing parsing algorithm to

check the state of the input string.

parsing algorithm:

set a be the first symbol of w;

set A to the top stack symbol;

while (A≠$) { /* stack is not empty */

if (A = a) pop the stack and

let a be the next symbol of w ;

if (A is a terminal) error();

if (M [A, a] is an error entry) error();

if (M [A, a] = A → B1 B2 … Bk) {

output the production A → B1 B2 … Bk;

pop the stack;

push Bk, Bk-1, … B1 onto the stack, with B1 on top;

}

if A=$,Sentence is Accepted.

}

 The Table 7 shows the moves made by top down

parser for the following PHP sample input token streams.

<? PHP $ID;$ID=$NUM;ECHO $ID; ?>

The pointer reads the input string character by

character. If the stack and at the end of the input string

contain an end symbol $, it is denoted that the stack is

empty, and the input is also consumed.

26

Journal of Computer Applications and Research, Volume 1, No 1, 2020

Table 6. Moves made by Top-Down Parser

Stack Input Action
$<program> <?PHP

$ID;

$ID=$NUM;

ECHO $ID;

?>$

R1

$<close_tag><block_stmt>

<open_tag>

<?PHP

$ID;$ID=$NUM;E

CHO $ID;

?>$

R2

$<close_tag><block_stmt>

<open_tag'><?PHP

<?PHP

$ID;$ID=$NUM;E

CHO $ID;

?>$ Terminal

$<close_tag><block_stmt>

<open_tag'>

$ID;$ID=$NUM;E

CHO $ID;?>$

R6 Ɛ

$<close_tag><block_stmt> $ID;$ID=$NUM;E

CHO $ID;?>$

R10

$<close_tag><stmt_list>

<dec_list>

 $ID;$ID=$NUM

$ID;$ID=$NUM;E

CHO $ID;?>$

R12

$<close_tag><stmt_list> ;

<$id_list>

$ID;$ID=$NUM;E

CHO $ID;?>$

R13

$<close_tag><stmt_list>;

<$id_list'> $ID

$ID;$ID=$NUM;E

CHO $ID;?>$

Terminal

$<close_tag><stmt_list>;

<$id_list '>

 ;$ID=$NUM;

ECHO $ID;?>$

R15 Ɛ

$<close_tag><stmt_list>; ;$ID=$NUM;

ECHO $ID;?>$

Terminal

$<close_tag><stmt_list>

$ID=$NUM;ECHO

$ID;?>$

R16

$<close_tag><stmt_list'>

<stmt>

$ID=$NUM;ECHO

$ID;?>$

R19

$<close_tag><stmt_list'>

<assign>

$ID=$NUM;ECHO

$ID;?>$

R26

$<close_tag><stmt_list'>;

<expr>=$ID

 $ID=$NUM;

ECHO $ID;?>$

Terminal

$<close_tag><stmt_list'>;

<expr>=

=$NUM;ECHO

$ID;?>$

Terminal

$<close_tag><stmt_list'>;

<expr>

$NUM; ECHO $ID

;?> $

R27

$<close_tag><stmt_list'>;

<expr'><term>

$NUM;ECHO

$ID;?>$

R32

$<close_tag><stmt_list'>;

<expr'><term'><factor>

$NUM;ECHO

$ID;?>$

R36

$<close_tag><stmt_list'>;

<expr'><term'>$NUM

$NUM;ECHO

$ID;?>$

Terminal

$<close_tag><stmt_list'>;

<expr'><term'>

; ECHO $ID;?>$ R34 Ɛ

$<close_tag><stmt_list'>;

<expr'>

; ECHO $ID;?>$ R31 Ɛ

$<close_tag><stmt_list'>; ;ECHO $ID;?>$ Terminal

$<close_tag><stmt_list'> ECHO $ID;?>$ R17

$<close_tag><stmt_list'>

<stmt>

ECHO $ID;?>$ R20

$<close_tag><stmt_list'>

<write>

ECHO $ID;?>$ R37

$<close_tag><stmt_list'>

ECHO

ECHO $ID;?>$ Terminal

$<close_tag><stmt_list'>;

<write_list>

$ID;?>$ R40

$<close_tag><stmt_list'>;

$ID

$ID;?>$ Terminal

$<close_tag><stmt_list'>; ;?>$ Terminal

$<close_tag><stmt_list'> ?>$ R18 Ɛ

$<close_tag> ?>$ R7

$<close_tag'>?> ?>$ Terminal

$<close_tag'> $ R9 Ɛ

$ $ Success

If the input string is matched with given grammar rules,

the correct message is displayed as a parse tree as shown

in Figure 2. If the input string is not matched with the

grammar rules, the error messages and location errors are

displayed.

Figure 2. Parse tree for input sentence

5. Experimental Results

We show some input simple PHP program that is

used for performance analysis. For evaluating purpose,

different number of simple programs collecting from

PHP programming tutorial site and PHP programming

book are used as test set. The parser is tested on 30

programs. The performance of the system was good in all

experiment scenarios for the various simple PHP

programs. After parsing the system using the proposed

grammar rules, it has been seen that the system can easily

generate the parse tree for an input program if the

program syntax structure satisfies the given grammar

rules. Otherwise, it gives output as an error. Table 7

shows the performance of the parsing successful rate

result

Table 7. Success rate for simple php program

Our result can compare with four related works.

J.A.A1-Taani et al. [1] reported that 94.3% of 70

Type Total number of

program(T)

Correct

(N)

success rate

A=(N/T)*100

%

Simple php

program

30 24 80

<program>

<open_tag

>
<block_stmt

>

<close_tag

>

<?PH

P

<ope

n

-

Ɛ

 <dec_
list>

< stmt

_list>

<$id_list>

;

$ID
<$id_list’

>

< stmt>
< stmt

_list’>

<term>

$ID Ɛ = <

expr>

;

< xpr’>

Ɛ

<clos

e
_tag’

Ɛ

<assign

>

< stmt> <stmt

_list’>

 <write>

ECHO <write_list

>

$ID

Ɛ

<factor> < term’>

$NUM Ɛ

?>

;

27

Journal of Computer Applications and Research, Volume 1, No 1, 2020

sentences were parsed successfully using efficient

method, top down chart parser. W. W. Thant et al. [2]

reported about 90.6% parsing accuracy on Myanmar

sentences using function tags. K. M. A. Hasan et al. [3]

reported an average accuracy of 78.2% for recognizing

Bangla grammar using Predictive Parser. We reported

that 80% of 30 programs were parsed successfully using

efficient top down parsing approach. W. W. Thant [5]

used 2200 Myanmar sentences using the Naïve Bayes

theory, which gave an average accuracy of about 89.4%.

6. Conclusion

 We proposed a system that can effectively investigate

the syntax errors of the PHP programming language by

using the top-down parsing approach. In the future, we

will extend our system to be useful in many programming

languages.

Acknowledgments

 I would like to thanks all people who directly and

indirectly contributed towards the success of this paper

for the support, encouragement, useful suggestions,

valuable guidance and help in preparing this paper.

References

[1] JAhmad A1-Taani, Mohammed Msallam and Sana Wedian,

“A Top-Down Chart Parser for Analyzing Arabic Sentences”,

The international Arab Journal of Information Technology,

Vol.9,No.2, March 2012, pp. 109-116.

[2] Win Win Thant, Tin Myat Htwe and Ni Lar Thein,

“Context-free grammars Based Top-Down Parsing of Myanmar

Sentences”, International Conference on Computer Science

and Information Technology (ICCSIT’2011), Pattaya, Dec

2011, pp. 71-75.

[3] K.M.Azharul Hasan, AI-Mahmud, Amit Mondaal and Amit

Saha “Recognizing Bangla Grammar Using Predictive Parser”,

International Journal of Computer Science &Information

Technology (IJCSIT), Vol.3, No.6, Bangladesh, Dec 2011, pp.

61-73.

[4] Rachana Rangra and Madhusudan, “Basic Parsing

Techniques In Natural Language Processing”, International

Journal of Advances in Computer Science and Technology,

Vol.4,No.3, India, March 2015, pp. 18-22.

[5] Win Win Thant, Tin Myat Htwe and Ni Lar Thein, “Parsing

of Myanmar Sentences with Function Tagging”, Yangon,

Myanmar.

[6] Bala sundara Raman L, Ishwar S and Sanjeeth Kumar

Ravindranath, “Context-free grammars for Natural Language

Constructs An Implementation for Venpa class of Tamil

Poetry”, India, 2003,pp.128-136.

[7] https://www.tutorialspoint.com/

[8] Robert W. Sebesta, Concepts of Programming Languages,

Tenth Edition.

28

https://www.tutorialspoint.com/

