
 Journal of Computer Applications and Research, Volume 1, No 1, 2020

Layers Matching of Open Flow Entries in Open vSwitch

Zin May Aye

Professor, Faculty of Computer Hardware and Technologies,

University of Computer Studies, Yangon

zinmayaye@ucsy.edu.mm

Abstract

This paper proposed the usages of Mininet in

various adoptions and methods. The emulator is used in

sdn related controllers, switches and hosts in

implementing the instant virtual network. Usage of

Mininet adoption in varies with different purposes. The

researchers apply it for SDN projects and testbed, and

the students and teachers adopt it for labs and projects

and IT services apply it for many sdn applications. By

using Mininet, user can deploy host, switch and

controllers run on VM (virtual machine). The virtual

mode strategy of Mininet has been conducted for the

purpose of prototyping and emulating for the network

traffic analysis. In this paper Layer 2,3 and 4 flow

entries are matched in the OVS flow entries and tested

with QoS applied in the modification of the packets. The

wireshark is used for the analyzing of the packet traffic

in the ethernet port of the OVS switch.

Keywords : OVS,SDN,Mininet

1. Introduction

Mininet is a network emulator which creates a

network of virtual hosts, switches, controllers, and links.

Mininet hosts run standard Linux network software, and

its switches support OpenFlow for highly flexible

custom routing and Software-Defined Networking.

Mininet supports research, development, learning,

prototyping, testing, debugging, and any other tasks that

could benefit from having a complete experimental

network on a laptop or other PC. It emulates the

network hosts links, and switches on a single machine.

Mininet uses process-based virtualization to run many

hosts and switches on a single OS kernel and also

provides an easy way to get correct system behavior and

also support miniedit.py for the GUI interface to

experiment with topologies. In this paper, all of the

network paradigms are tested on the command line

interface mode. The first is a simple topology for testing

and check the flows of traffic between the devices.

Priority traffic flows are run and tested for the flow

actions. Python based network programming is also

essential in creating topology design in mininet and a

handy Python API for creating varying sizes of

networks and topologies can be applied in the emulator.

2. Related Works

 Bob Lantz, Brian O’Connor [1] explained that

Mininet already has the capability of creating containers

as well as the network from a single, simple Python API.

In his paper the author explained the applied of Mininet

and the voids the need for installing, configuring of the

required systems. To support configurations that exceed

the resources of a single server, The experimental cluster

of Mininet support may easily be used to easily and

distribute the virtual testbed across multiple physical

servers. In the paper of [1], the author evaluated on the

tool of SDN in emulation process and explained the

Mininet’s performance and the evaluation . In that paper

was specified the tests were conducted to study on the

emulator limitations that are related to the environment

of the emulation, the capabilities of the resources. The

author also evaluated, the Mininet scalability on different

topologies with applied varying number of nodes and

scenarios. The results of that paper described that the

simulation environment has a remarkable effect on the

required time for building a topology.

3. The Basic of OVS and mininet

 Open vSwitch, abbreviated as OVS, is an open-source

implementation and the main purpose of is to provide a

switching stack for hardware virtualization

environments, and providing protocols and standards

used in computer networks. It is licensed under the open

source Apache 2 license. It is well-suited for an open-

source project that allows hypervisors to virtualize the

networking layer.

Mininet is a kind of a network emulator that suppor in

designing and creating virtual hosts, switches,

controllers, and links. The host on the Mininet run on

the Linux software and its switch supports OpenFlow

for flexible traditional switching processes. Mininet

supports research, development, learning, prototyping,

testing, debugging, and any other tasks that could

benefit from having a complete experimental network

on a laptop or other PC.[3]

Mininet command lines use various commands for

implementing the desired network. The most of the

applied commands need to create the virtual testing

network topology used a command-line launcher (mn)

to instantiate networks as in the followings:

 mn --topo single,4

mn --topo tree,depth=2,fanout=3

3.1 Creating Simple Topology in CLI

In OVS it is need to learn and understand the flow

entries on OVS, ovs-ofctl command, flow entries on an

OpenFlow capable switch control behavior of packets,

typically installed dynamically with an SDN controller

151

 Journal of Computer Applications and Research, Volume 1, No 1, 2020

Figure 1 shows the simple network topology for the

switch and host connections. The switch is the open

flow switch. The Open flow is installed in Mininet. The

Switch is Open virtual Switch (OVS) and need to add

the flows manual from network admin to access the

connection with the hosts. Many hosts can applied up to

(4096) in Mininet based on the version. By applying the

command under the root with mininedit.py, the required

network infrastructure of virtual switch and three hosts

topology can be applied and e designed as shown in

figure 1.

 Figure 1. An OVS and hosts connection

In command line interface, it is needed to write for

the formation of that topology.

$ sudo mn –topo=single,3 –controller= none, --mac

After running the topology the network can be seen

by applying net command, and it is shown in figure 2

and link output in figure 3. The dump command will

show the process id and the ip address of the nodes in the

topology.

 Figure 2. Network nodes for the topology

 Figure 3. Network links in the topology

3.2. Openflow Vswitch and Flow Entries

To apply the flows in openflow it needs to apply

ovs-ofctl command to manually add flow entries. Flow

entries on an Openflow capable switch control the

behavior of packets[4]. These flows can be deleted as

required. Without the flow entries and adding the

required flows, the host and switch can never be

connected and the host will be failure in ping test for the

network reachability. Flows can be added and deleted

by applying the following commands :

$sh ovs-ofctl add-flow s1 action=normal

 $sh ovs-ofctl del-flows s1

Apply pingall can see the host can respond icmp echo in

the connection. While deleting the flow entry all the host

connections cutoff and no reachability to each other as in

figure 4.

Figure 4. Test reachabilty between hosts

3.3. Layer 2 matching

Layer 2 matching is based on the mac address of the

hosts in the virtual network. It can be called the /MAC

Based Flow Entry matching. The flow

entries including of mac addresses are added and

input/output port is specified. This can be defined as

Layer 2 matching in openFlow switch. By adding two

flows for the purpose of bidirection communication, the

switch can know the packet to transfer from which port

that it enters. In the mac-based flow, openflow virtual

switch accepts the flow with mac address for the host

with both source and the destination and apply mac

matching in flow entries for the connections. The first

and foremost is remove and delete the flows added in

manually in OpenVswitch. The bi-directional flow is

provided for the specified source and destination mac

addresses. In the mininet prompt use the command [sh

ovs-ofctl add-flow s1 dl_src=00:00:00:00:00:01,

dl_dst= 00:00 :00 : 00 :00:02,actions=output:2] and [sh

ovs-ofctl add-flow s1 dl_src=00:00:00: 00:00:

02,dl_dst=00: 00 : 00:00:00:01,actions=output:1]. Ths

flow rule is not assisting of L2 broadcasting in the

OpenVSwitch. The broadcast mechanism is added for

the flooding and allowing ARP request for layer 2

matching. In the topology with protocol number of 1 is

added to provide icmp and applying the command [sh

ovs-ofctl add-flow s1dl_type= 0x806,nw_

proto=1,actions=flood]. This action means outputting

packets on all physical ports other than the port on

which it was received and any ports on which flooding

is disabled . the dl_type of 0x806 refers to arp protocol

and packets must match the lower 8 bits of the ARP

opcodes.The flood action class which sends packets to

all existing ports except the ingress port All hosts can

have ping access with layer2 matching in the network

topology. Figure 6 shows the adding the flow entry

based on the source and destination mac addresses.

Figure 5. The commands for layer2 mac address

entries

Figure 6. Flow entry with mac address

3.4. Layer 3 matching
 It is the critical in use of fields in OpenFlow to

determine whether particular field values agree with a

152

 Journal of Computer Applications and Research, Volume 1, No 1, 2020

set of constraints called a match. At layer 3, the IPv4 or

IPv6, source and destination. Layer 4 matching use port

(tcp/udp) in the fields. Other data fields are computed

Ethernet contains an Ethertype and IPv4 contains IP

protocol type. Some types of matching consist of exact

match, that specified exact nw_src and nw_dst ip

addresses. The other is wildcard and bitwise matches.

Bitwise match, as in nw_src= nw/nw_mask can be

applied. In Layer3 matching, it is required dl_type that

represents for ether type of ipv4 and if it is not included,

the matching of wildcard for network source and

destination will be ignored in the openflow. The

keyword (ip) can be also used in for dl_type. For the

action, it is for broadcasting exclude ingress port. The

ether type of 0x808 is used in the flow. The

configuration format is as follows:

ovs-ofctl add-flow <bridge> dl_type=<ethernet

type>,nw_src=ip[/netmask],actions=<action>

ovs-ofctl add-flow <bridge> dl_type=<ethernet

type>,nw_dst=ip[/netmask],actions=<action>

3.5 Priority field in the Flows in Layer3

 Matching

 In the flow of the packet the sensible behavior is

sometimes expected as more specific flows taking

precedence over less specific flows. A higher value will

match before a lower one. For mod-flows without --

strict, priority is only significant if the command creates

a new flow, that is, non-strict mod-flows does not match

on priority and will not change the priority of existing

flows. Other commands do not allow priority to be

specified. priority=value. The priority at which a

wildcarded entry will match in comparison to others.

value is a number between 0 and 65535, inclusive. An

exact-match entry will always have priority value of

65535. When adding a flow, if the field is not specified,

the flow's priority will default to 32768. In the following

two flow rules, one is 500 and the other is 800.

Testing of Host3 to Host1 is success and the flow of in

port 1 to output 2 is denied. The command of [sh-ovs-

ofctl add-flow s1 priority=500, dl_type=0x800, nw_src=

10.0.0.0/24 ,nw_dst= 10.0.0.0./24,action=normal] and

[sh-ovs-ofctl add-flow s1 priority=800,ip,nw_src=10.0.0.

3, actions =normal] are applied for two different

priorities. This action is in regard to using single-flow

table only. The analyzing of these flows in OVS with

command dump-flows is show in figure 9.

When two flow entries with wildcards are matched,

the entry with the higher priority will match before the

lower one. By setting priority 32768 that is default, and

the action is drop, the matching of priority is only one

with the default value and the packet will drop. There is

no communication access between hosts and dump-flow

shows the new action drop rule entry. H1 and H2 cannot

have access and the ping results are failed as in figure 7.

The dump flow result shows the drop action for the

flow rules in figure 13. The value of priority is between

0 and 65535. Priority is the critical role in flow entry as

the high priority is only applied in action and other

lower priority flows are ignored just like in router’s

ACL rules. The default priority is 32768. Add drop rule

in S1 for the priority value greater than the default and

select hard timeout the flow will be deleted and

connectivity is resume. First all the flows are checked

for successful connectivity with mac-based flow entries.

The flow of priority value greater than default is added

and then analyze the connection. As in a rule like [sh

ovs-ofctl add-flow s1 priority =40000, hard_

timeout=30, actions=drop].

 Within the hard_timeout, host has stopped the

reachability and then resume after hard_timeout value.

Figure 7. Ping failed due to priority action

 Figure 8. Dump flows in flow table

Figure 9. Dump-flows of layer3 flows in OVS

3.6. QoS Marking in flow
 In the consideration of quality of sevice affects in flow

entries, the flows are tested with the manually added

priority values for each of the unidirectional flow and

added the action for the packet in these flows. In this

system, Differentiated Services (DiffServ) is treated by

intermediate systems with relative priorities based on

the type of services (ToS) field. It is inserted in the flow

to test the Layer 2 fram applied the dscp code in the

traffic. DS field of EF PHB is applied to test the open

flow traffic and capture with wireshark as show in

figure 9. Code point 0x2e is work with EF forwarding

in openflow virtual switch and the flow is actioned with

the priority value of the flow table entry as shown in
Figure 10. The traffic flow of dscp is analyzed in the

wireshark tool. In the flow entry of the dscp code 46

turn into 8bits and get the value of 184. The aim is not

to pass traffic with QoS of dscp value 46 to other hosts.

The adding of QoS flow and the host connectivity flows

to the flow table of virtual swich is as follows and also

in the figure 10.

[Sh-ovs-ofctl add-flow s1

priority=800,ip,nw_src=10.0.0.3,actions=mod_nw_tos:1

84,normal .]

153

 Journal of Computer Applications and Research, Volume 1, No 1, 2020

 Figure 9. QoS marking for the OVS flow

Figure 10. Dump flows of QoS flow in table entry

and wireshark capture code

3.7. Verifying ARP Protocol

 The flows of communication between three hosts are

manually added and analyze the ARP protocol messages

in the transactions.

The flow rules are added as follows:

Mininet>sh ovs-ofctl add-flow s1

arp,nw_dst=10.0.0.1,actions=output:1

Mininet>sh ovs-ofctl add-flow s1

arp,nw_dst=10.0.0.2,actions=output:2

Mininet>sh ovs-ofctl add-flow s1

arp,nw_dst=10.0.0.3,actions=output:3

The command pingall and the dump-flows output

show the required output for ARP between the hosts and

switch. Figure 10 shows the ping test between hosts and

figure 11 shows the dump-flows with arp responses.

Figure 10. Ping test between hosts

Figure 11. Arp dump-flows in flows monitoring

3.8 Applied Wireshark in Mininet

Wireshark is applied as the network protocol

analyzer in the networking fiels. By applying wireshark,

the use can analyze and see what’s happening in the

network at details and , it also has the features of deep

inspection of hundreds of protocols, Live capture and

offline analysis and so on. In Mininet with the virtual

network topology, wireshark can be applied and analyze

the traffic in details. The followings are applied in

Mininet to view the wireshark protocol analyzer in

virtual network.

mininet> h1 wireshark &
mininet> h2 wireshark &
mininet> sh wireshark &

Figure 12. ARP traffic in wireshark

3.9. Layer 4 Matching

 For the layer 4 matching, it is needed to apply

application protocol in the flow. The design for http

server is shown in figure 13.

Figure 13. HTTP server in Host 3 for layer 4

matching

 The process is tested with H3 as the http server rand

the port 80 is allowed in the flow entry to access from

the other hosts. The curl command figure 15 is applied

to access the web sever in H3 and match tp_src or tp_dst

and need to specify dl_type and nw_proto in the flow.

The port of tcp UDP is specified as required for the

application protocol. Layers 4 matching is start with

assigning Host 3 to Http server and the flow entry is

configured for other host with application layer protocol

of tcp port 80 and output ports are assigned to port 3 of

OVS. If the http ports are matched in the traffic flows,

the h1 host can access to webserver as shown in figure

14. One can also apply xterm for host H3 to apply http

sever as in figure 14 and h1 and h2 clients access to

server as in figure 15. The flows of http traffic with tcp

sequences are shown in figure 16.

Figure 14. Host 3 with Xterm connection
The command for layer4 matching in the hosts in mininet are

as follows:

mininet> h3 python -m SimpleHTTPServer 80 &

mininet> sh ovs-ofctl add-flow s1 arp, action=normal

HTTP 80

dscp =46

154

 Journal of Computer Applications and Research, Volume 1, No 1, 2020

mininet> sh ovs-ofctl add-flow

s1,dl_type=0x800,nw_proto=6,tp_dst=80,actions=outpu

t:3

mininet> sh ovs-ofctl add-flow s1,ip,nw_src =10.0.0.3,

actions=normal

Figure 15. Use curl command to access http server

Figure 16. Wireshark traffic with http

4. Results and Discussions

 For the OpenFlow OVS, the flows are applied, and the

corresponding command lines are processed for the layer

matching. In the layer matching Layer 2 matching

applied mac addresses for the source and destinations

hosts and analyze the flow output in Mininet. For the

Layer 3, the ip addresses are used in the flow entries and

the protocol are inserted in generating the flow rules. The

priority values are also used for the action rule to work

properly or not in the flow entries. In the Layer 4

matching, the http server in one of the host is accesses

from the other host with the respective flow entries that

specified application port in entries. The layers

matchings are also analyzed by applying wireshark tool

for monitoring traffics. For further analysis, the

controller is added and the applied rules can be analyzed

with multiple flow tables. This paper is based on the

single flow table of the OVS switch and its open flow

entries with Mininet.

5. Conclusion

For the testing with OpenFlow switch, the

VirtualBox graphical interface 6.1.6 and the Guest OS

of ubuntu 16.04 are applied. The Mininet version of

2.2.170321 is installed with the openflow controller

package for the testing OVS switch application. In this

paper the simple virtual network topology without the

controller is applied. The testing of the network is

emphasized on the layer application command and the

parameter usages performance of mininet tool. The

network traffic is captured in wireshark. The mininet is a

great and convenient tool and has scalability to be

studied. Mininet runs on a single system and resources

need to be shared among virtual hosts and switches.[5]

OVS switch only is applied in the testing and flow rules

entries for the switch are specified and analyzed in the

system. For further application, the remote controller,

POX or Ryu controllers and others can be applied to the

network to control the flows and the traffic can be

analyzed in the environment and applied with the OVS

applications.

Acknowledgements
 I wish to express my sincere appreciation to my Rector to

do the and guide for the research paper. The physical and

technical contribution of the referenced paper and the authors

to support the paper to be considered and tested. Without the

persistent help and guidelines the goal of this paper would not

have been realized.”

References
[1]. Bob Lantz, Brian O’Connor, A Mininet-based Virtual

Testbed for Distributed SDN Development, August 18-20,

2015, London, UK.

[2]. Faris Keti, Shavan Askar , Electrical and Computer

Engineering Department, Environments Emulation of Software

Defined Networks Using Mininet in Different Simulation,
2015, 6th International Conference on Intelligent Systems,

Modelling and Simulation

[3]. The Openflow Switch, openflowswitch.org.

[4]. Mininet Project. Mininet. http://mininet.org/.

[5].Mininet.An Instant Virtual Network on your Laptop.2014,

Sept. 2014, http://mininet.org.

155

