
75

Permission Request Characterization on Android

Chit La Pyae Myo Hein

University of Computer Studies, Monywa

chitlapyae86@gmail.com

Khin Mar Myo

Central Institute of Civil Service (Lower

Myanmar), Yangon.

kmmyo.ag@gmail.com

Abstract

Mobile malware performs malicious activities

like stealing private information, sending

messages, SMS, reading contacts can harm by

exploiting the data. Malware spreads around the

world infects not only end user applications, but

also large organization service provider’s

systems. Malware characterize is a vital

component that works together with malware

identification to prepare the correct effective

malware antidote. Malware feature category is

also important to reduce costs and time for

malware identification. They may have many

features in every mobile android application. This

system proposed a score-based detection for

Android malware. The advantage of this system is

that it uses only manifest files to detect malware.

Therefore, in this work is to explain the criteria

for characterize, this system need to process

characterize different features from the manifest

file of permission request. According to the

experiment on different categories; the results

show that the proposed features characterize is

applicable as a lightweight approach.

1. Introduction

 One of the most common uses is access to the

Internet. Users can download malicious software

by repackaging applications using reverse

engineering tools. The attacker changes the code

in order to incorporate the malicious code, then

repackages the application and publishes them in

the application market. Users usually cannot

differentiate between the malware application and

the legitimate application, thereby end up

installing malware.

 Mobile applications are rapidly growing

segment of the global mobile market. Android is

an open-source mobile phone operating system

with Linux-based platform which consists of the

operating system, middleware, and user interface

and application software as shown in Figure 1.

APPLICATIONS

APPLICATIONS FRAMEWORK

LIBRARIES ANDROID RUNTIME

LINUX KERNAL

Home Contacts Phone Browser ...

Activity

Manager

window

Manager

Content

Providers

View

System

Package

Manager

Telephone

Manager

Resource

Manager

Location

Manager

Notification

Manager

Surface

Manager

Media

Framework SQLite

OpenGLIES

Core Libraries

WebKa

SGL SSL Libe

Dalvik Virtual

Machine

Free Type

Display

Driver

Camera

Driver

Flash Memory

Driver

Binder (IPC)

Driver

Power

Management

Audio

Driver

WiFi

Driver

Keypad

Driver

Figure 1. Architecture of Android

 Android is about to become the most widely

used OS on mobile phones, but with Android

comes a security vulnerability that few users take

into account. On the Android Market, users can

download and upload thousands of applications

without having special security checking up

knowledge. Security plays a vital role in today’s

mobile world.

 The rest of the paper is organized as follows.

Section 2 presents the related works.Section 3

explains the malware detection system, detailing

76

the process of building the application to collect

and give information about the malware detection

system. Section 4 presents the results of the

malware detection testing and evaluation

methods. Section 5 concludes and gives possible

future work to reduce the limitations of the system

proposed.

2. Literature Review

 Many researchers propose complicated

extensions to fortify the Android’s security

framework. They mainly focus on protecting the

user data and mitigating some types of privilege

escalation attacks. This section recent some of the

most well-known approaches to extract the

malware list in android technologies.

 Alternative research has focused on using

machine learning techniques to identify malware.

Sanz et al. (2012) applied several types of

classifiers to the permissions, ratings, and static

strings of 820 applications to see if they could

predict application categories. They applied this

by using the category scenario as a stand-in for

malware detection. [4] Shabtai et al.(2010)

similarly built a classifier for Android games and

tools, as a proxy for malware detection.[1] Ryo

Sato, Daiki Chiba and Shigeki Goto propose a

new method for detecting Android malware by

analyzing only manifest files based on malware

score. [13] Zhou et al. (2012) found real malware

in the wild with DroidRanger, a malware

detection system that uses permissions as one

input. [14] DroidMat (2013) focuses on using

attributes of the manifest to trace API calls

requiring permissions. [12] N. Peiravian and X.

Zhu (2013) proposes a rule-based security

mechanism designed to prevent malware at

install-time. [11] Explores the use of machine

learning algorithms for malware detection using

permissions and API calls. The studies in Mila

(2009) and android (2015) Android Content

License “URL” www.source.android.com

/license.html retrieved focus on efficient, scalable,

and accurate malware detection in large Android

markets.

3. Proposed Feature Selection Method

 According to Wu, Mao, Wei, Lee and Wu. (2012)

there have been a lot of methods and techniques

for feature selection. Most of the techniques are

based on machine learning technique. [6]

Meanwhile, other papers Peiravian and Zhu

(2013) Shabtai, Fedeland Elovicitried (2010) out

another light weight approaches to classify mobile

malware. Their approach [11] [3] is only based on

manifest file analysis rather than applying

machine learning algorithms. This paper also

proposes a feature selection method based on the

manifest file analysis approach. The process flow

of our propose method is described in Figure 2.

Calculate Feature Score iteratively with different

threshold

Accept & Extract Android Application Package

Extract Features from Manifest File

Select Features with High Score

Score-Based Feature Selection

Selected Features

Figure 2. Flow of Proposed Score-Based

Feature Selection

 The nature of mobile android application

(APK) file, how to extract the features from

mobile applications are described in this section.

The detail explanation of how to process the

proposed score-based feature selection is also

described in the section below.

3.1. Android Application Package and

Manifest File

An Android application package (apk) usually

includes the components as described in Figure 3,

below, in which a manifest file is also included.

77

APK

META-INF res Classes.dex Resources.arcsAndroidManifest.xml

Figure 3. An Android Application Package

 Every application must have an android

Manifest.xml in its root directory. The manifest

presents essential information about the

application to the Android system. The

information system must have this manifest into

before it can run any of the application’s code.

Applications must declare in their manifest file

which permissions they request or require. When

an application is installed, the Android system

will present the various malicious applications

uploaded in Google market, which misuse the

deficiencies in the malware detection framework

making the user decide to allow the installation

or not.

Android permissions control the access to

sensitive resources and functionalities. Android

defined permissions are available to third party

applications [17]. The permission mechanism

should be used to secure the various components

in an application. This effect is achieved primarily

by associating permissions with the relevant

component in its declaration in the manifest.

Additionally, applications having Android

automatically enforces for the existence of the

permissions in the relevant scenarios.

3.2. Features Extracted from Manifest

File

There is the same manifest file in both benign

and malware applications. The information

extracted from manifest file can be categorized

into six categories. They are: (1) Permission, (2)

Intent filter (action), (3) Intent filter (category),

(4) Process name, (5) Intent filter (priority) and

(6) Number of redefining permission.

Many applications require several permissions

to function properly. These permissions must be

listed explicitly in the application’s Android

Manifest.xml file and accepted by the user during

installation. Therefore the only permission based

information is extracted from manifest file as our

feature set. Table 1 shows the examples of

permission keywords in a manifest file.

Table 1. Permission Keywords in a Manifest

File

<user-permission android name=”

android.permission.ACCESS_WIFI_STATE/>

<user-permission android name=”

android.permission.READ_PHONE_STATE/>

<user-permission android name=”

 android.permission.WRITE_SMS/>
<user-permission android name=”

 android.permission.SET_WALLPAPER/>

3.3. Score-Based Feature Selection

The detail process flow of the proposed feature

selection method is described in this section. The

features are extracted from manifest file of

android application package (.apk) as explained in

section 3.1 and 3.2. The sample extracted features

are described (in Table 2 below).

The score for each extracted feature is

calculated using the following formula.

MS=E-UE /A eq (1)

Where; MS= malware score

 E= number of feature existence

 UE= number of feature un-existence

 A = total number of applications

 The decision of malware score feature should

be selected or rejected, which are made by

adjusting the score value with different

thresholds. The classifier ‘Weka Tool’ is used to

calculate and validate the classified results. If the

feature set malware score, which can give the

highest classification results are selected, then

these feature sets within the appropriate threshold

are chosen as selected features. The remaining

features under the threshold level are rejected.

78

Table 2. A Table Showing the Permissions

Used by each of Android Applications

4. Experiment and Evaluation

 We tested our system against a collection of

many benign and malicious Android applications.

For each data point, we selected a random subset

of the training (benign) applications and

performed using training set. A dataset made of

250 trusted and 250 malware Android

applications was collected. The trusted

applications, by different categories were

downloaded from the common Android Markets.

Others malware applications of different

categories and malicious intents were downloaded

from public databases of antivirus companies. The

malware nature of each application was confirmed

by antivirus companies. Then the features are

extracted from the 250 trusted and malware

Android applications. These features are used to

evaluate our proposed feature selection method.

From these 134 features are obtained applications.

The detailed experiment is described in the

following section.

4.1. Feature Score Calculation with

Different Threshold

 The score for each of the 134 features out of

the 203 Android applications are calculated using

Equation (1) MS=E-UE/A. The score results of

some features out of the 203 applications are

described in Table 3 as an example.

Table 3. Feature and Their Feature Score
F_

No

Feature

Name

E EU E-EU

/A

M_

Score

%

1 WriteS

MS

99 5 94/203 0.4 40

2 Call
Phone

76 99 23/203 0.1 10

3 ReadSM

S

89 65 24/203 0.1 10

4 Internet 94 86 8/203 0.03 3

5 Read

Content

89 42 47/203 0.2 20

6 Read_
PhState

99 45 45/203 0.2 20

7 Battery

State

99 65 34/203 0.1 10

8 Delete
Package

86 38 42/203 0.2 20

9 Global

Search

99 70 29/203 0.1 10

10 Call
Privilleg

e

88 72 16/203 0.07 7

 The following Figure 4 also shows the results

of feature score on Malware and Benign

applications.

 If we take the threshold value 11, the features

under the threshold value (2,3,4,7,9,10) are

rejected and remaining features (1,5,6,8) are

selected see Figure 4. Similarly, feature selection

is tested by using different numbers of threshold

values. The threshold value, which gives good

classification accuracy is chosen and marked for

later use.

Figure 4. Feature Score on Malware and

Benign

79

 How to validate the above selected features

can provide good characterize for Malware and

Benign application as explained in the following

section.

4.2. Categorization of Risky Permission

Permissions have different danger levels

depending on the functions they allow the

application to perform and are consequently

classified in protection level groups. Likewise,

through this attribute, it is possible to determine

which applications have access to the permission:

Risk1: They pose a risky1 factor and typically

only affect the application’s scope. Risk1

permissions are granted by the system

automatically without explicit approval of the

user.

Risk2: They are risky2 permissions that allow

costly access to services. The permissions can be

granted by the user during installation. If the

permission request is denied, then the application

is not installed.

Risk3: They are risky3 permissions are only

granted if the requesting application is signed by

the same developer that defined the permission.

Risk3 permissions are useful for restricting

component access to a small set of applications

trusted and controlled by the developer.

The big problem is that groups can contain

both normal, basic permissions as well as more

dangerous permissions. For example:

i. Location: An app that asks for your

approximate, network-based location can

now gain permission to track your exact

location with your device’s GPS.

ii. SMS: An app that only needs to receive text

messages can now gain the permission to

send SMS messages in the background,

potentially costing you money.

iii. Phone: An app that asks to read your call log

can now gain permission to reroute outgoing

calls and make phone calls without asking

you.

iv. Photos/Media/Files: An app that needs to

read the contents of your USB storage or SD

card can now format your entire external

storage device.

The categories of applications are often to

characterize an application as malicious or

benign. In characterization features are used to

make decisions. Application features are required

to be informative to produce an accurate decision.

Table 4. Categorization of Permission Risky

Data

Categor

y

Data

Usage

Permission Request

Private Threat

R

1

R

2

R

3

Sensor/

Location

Location

Audio

Video

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

BLUETOOTH_ADMIN

ACCESS_NETWORK_STATE

ACCESS_WIFI_STATE

READ_SOCIAL_STREAM

RECORD_AUDIO

CAMERA

External

Storage

WRITE_EXTENAL_STORAGE

READ_EXTERNAL_STORAGE

Commu

nication

SMS

MMS

Voice

Wap Push

RECEIVE_SMS

READ_SMS

RECEIVE_MMS

PROCESS_OUTGOING_CALLS

RECEIVE_WAP_PUSH

 Another observation is that some applications

of permissions are requested by such malware

applications in the Cantagio dataset. Malware are

more favor of changing the settings and use

money-related services such as short message

service (SMS). Changing settings, especially

changing the network settings, generally is the

first step before a malware performs any

malicious activity. Sometimes malware even try

to kill background processes, which could help

them avoid being detected by anti-virus

applications. Characterization system can see that

the usage pattern of SMS related permissions is

80

quite different between the benign applications

and the malware applications and many malware

applications attempt to request SMS related

permissions. SMS is also a risky permission of

private threat (Risk3) that is more likely requested

by malware applications. Describe the data usage

of SMS include the data category of

communication as shown in Table 4.

5. Conclusion and Future Work

 The advantage of this system is that it uses only

manifest files to detect malware. Manifest files are

required in all Android applications, and thus, the

proposed system is applicable to all Android

applications. This system proposed a score-based

detection for Android malware. The results show

that the proposed method can detect malware and

benign samples that are undetectable by a simple

static approach. Similarly malware

characterized accuracy is also evaluated using

different permission of feature. Future work will

emphasize testing of already tested malware

applications to deduce the characterized of their

performance. Testing of other major applications

has been done in the Android Market and

discovers additional mobile device

vulnerabilities.

References

[1] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated

Static Code Analysis for Classifying Android

Applications Using Machine Learning” In

Proceedings: Computational Intelligence and Security

(CIS), 2010 International Conference

[2] A. P. Felt, K. Greenwood, and D. Wagner, “The

effectiveness of application permissions,” in

Proceedings of the USENIX Conf. on Web Application

Development, ser. WebApps, 2011.

[3] A. P. Felt, E. Chin, S. Hanna, D. Song. D. Wagner.

Android permissions demystified. In the proc. of the

18th ACM conference on Computer and

communications security, CCS 11, ACM, 627-

638,(2011)

[4] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero,

and P. Bringas, “On the automatic categorisation of

android applications,” in Proceedings of the 9th IEEE

Consumer Communications and Networking Conf.

(CCNC), 2012.

[5] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero,

J. Nieves, P.G. Bringas y G. “MAMA: Manifest

Analysis for Malware Detection in Android” published

in Cybernetics and Systems-Intelligent Network

Security And Survivability 1,October,2013

[6] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee and K.-

P. Wu. Droidmat: Android malware detection through

manifest and api calls tracing. In 2012 Seventh Asia

JCIS, pages 62–69. IEEE, August 2012.

[7] D. Barrera, H. G. u. c. Kayacik, P. C. van Oorschot,

and A. Somayaji, “A methodology for empirical

analysis of permission-based security models and its

application to android,” in ACM CCS ’10.

[8] G. Holmes, A. Donkin, and I.H. Witten, ―Weka: a

machine learning workbench,‖ August 1994, pp. 357-

361.

[9] J. Sahs and L. Khan “A Machine Learning approach

to Android malware detection,” 2012 European

Intelligence and Security Informatics Conference,

2012.

 [10] L. Batyuk, M. Herpich, S. A. Camtepe, K.

Raddatz, A. Schmidt, S. Albayrak, "Using static

analysis for automatic assessment and mitigation of

unwanted and malicious activities within android

applications," Malicious and Unwanted Software

(MALWARE 2011), 6th International conference,

2011.

[11] N. Peiravian and X. Zhu. Machine learning for

android malware detection using permission and api

calls. In Proc. of IEEE International Conference on

Tools with Artificial Intelligence (ICTAI), pages 300–

305. IEEE, November 2013.

[12] R. Sato, Daiki Chiba and Shigeki Goto “Detecting

Android Malware by Analyzing Manifest Files”

Proceedings of the APAN – Network Research

Workshop 2013

[13] W. Enck, M. Ongtang, and P. McDaniel. On

lightweight mobile phone application certification. In

Proc. of the 16th ACM conference on CCS, pages 235–

245. ACM, November 2009.

 [14] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey,

You, Get off of My Market: Detecting Malicious Apps

in Official and Alternative Android Markets,” in

NDSS’2012.

[15]Google Android Retrieved

http://developer.android.com/guide/basics/what-is-

android.html

[16] Google Android source code. Available:

http://source.android.com/source/downloading.html

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5692951
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5692951
http://source.android.com/source/downloading.html

81

[17] Google Inc. Android Developers. Manifest.

permission.

http://developer.android.com/reference/android/Manif

est.permission.html.

[18] Google Inc. Android Developers. Security and

Permissions

http://developer.android.com/guide/topics/security/sec

urity.html.

[19] Permission>Android Developer - API Guides –

Android

Manifest.http://developer.android.com/guide/topics/m

anifest/permission-element.html

[20] Cantagio mobile malware-mini-dump

http://contagiominidumo.blogspot.com

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://contagiominidumo.blogspot.com/

