
 1

READ COPY UPDATE: TO SOLVE CONCURRENCY PROBLEM

USING THREADS

Swe Swe Aung, Swe Swe Shein

Computer University (Taunggyi), Myanmar

sashiway@gmail.com, ssksucsy@gmail.com

ABSTRACT

As concurrency systems expand and

become more and more popular, there is a growing

need for efficient, tolerating stale data and

reducing in concurrent writing problem. The use of

multiple threads is beneficial in concurrent access

files on file server. Threads allow operations from

multiple clients to run concurrently and possibly

access the same objects. The focus of this thesis is

to implement concurrency. The client’s requests

are processed by Read_Copy Update techniques

and Round Robin fashion and multiple worker

threads that operate reading and writing

operations on data files in file server. This paper

analyses performance evaluation on processing

time by single worker thread and multiple worker

threads and the results show less processing time

in required for multiple worker threads.

Keywords: Read_Copy Update, Multithreading,

 File Server.

1. INTRODUCTION

Concurrency is a property of system in

which several computational processes are

executing at the same time, and potentially

interacting with each other. The concurrent

processes may be executing truly simultaneously,

in the case that they run on separate processors, or

their execution steps may be interleaved to produce

the appearance of concurrency [6].

Distributed file system supports the

sharing of information in the form of file

throughout on internet. File systems are designed

to store and manage large number of files, with

facilities for creating, updating, naming and

deleting files. The file systems also take

responsibility for the control of access to files,

restricting access to files according to user’s

authorizations and the type of access

requested(reading, updating, executing and so on).

A well-designed file service provides

access to files stored at a server with performance

and reliability similar to files stored on local disks.

A distributed file system enables programs to store

and access remote file exactly as the do local ones,

allowing users to access files from any computer in

an internet [3].

2. MOTIVATION

If a set of processes is accessing files with

locking, then Read_Copy Update is not necessary.

In the situation where the user wishes to update the

file being accessed by other without lock, then

Read_Copy Update is needed to access it

concurrently.

This system proposes Read_Copy Update

technique to solve concurrent writing problem.

And Round_Robin scheduling algorithm is applied

to reduce starvation and nonpreemptive.

This paper intends to implement

concurrency by using Read_Copy Update

technique and threads that can perform efficiently

and effectively in tolerating stale data and reducing

process’s waiting time.

3. RELATED WORK

Operating System such as Linux often

performs expensive synchronizations in common

code to protect against infrequent destructive

modifications. These synchronization operations on

the common code paths result in increased

overhead, reduced scalability on a multiprocessor

[5].

mailto:sashiway@gmail.com
mailto:ssksucsy@gmail.com

 2

This paper uses Read_Copy Update

technique to determine when update operations

may be safely carried out in order [4].

Copying of the shared data is permitted so

that waiting time can be reduced and even

eliminated. The copies of the shared data will

reside in a set of buffers. The writer, when it

wishes to change the shared data, will write into a

subset of the buffers. A reader will obtain a correct,

recent value from one of the buffer [2].

4. THEORETICAL BACKGROUND

4.1 File Server

A computer connected to the network that

contains primary files/applications and shares them

as requested with the other computers on the

network. If the file server is dedicated for that

purpose only, it is connected to a client/server

network, e.g. Novell Netware. All the computers

connected to a peer-to-peer network are capable of

being the file server, e.g. LANtastic and Windows

for Workgroups [7].

4.2 Concurrency in File Server

 A thread package with multiple

independent threads of execution within a single

process supports multiple clients and periodic

operations within file server.

 File Server creates a thread for a client

when it requests to access file. Thread is deleted

when client terminates its connection.

 Since server process may be processing

the requests of hundreds of clients simultaneously,

the server operates in real-time [3].

4.3 File Server Architecture

In the client/server model, a file server is a

computer responsible for the central storage and

management of data files so that other computers

on the same network can access the files.

A file server allows users to share

information over a network without having to

physically transfer files by floppy diskette or some

other external storage device. Any computer can be

configured to be a host and act as a file server.

In its simplest form, a file server may be

an ordinary PC that handles requests for files and

sends them over the network. In a more

sophisticated network, a file server might be a

dedicated network-attached storage (NAS) device

that also serves as a remote hard disk drive for

other computers, allowing anyone on the network

to store files on it as if to their own hard drive [8].

4.4 Read_Copy Update

It is updating a copy of an element while

allowing concurrent reads on it. Any reading thread

that starts its access after an update completes is

guaranteed to see the new data.

Old data may be flagged so that the

reading threads may detect it and take explicit steps

to obtain up-to-date, if required [4].

4.5 What is a Thread?

A thread can be loosely defined as a

separate stream of execution that takes place

simultaneously with and independently of

everything else that might be happening.

A thread is like a classic program that

starts at point A and executes until it reaches point

B. It does not have an event loop. A thread runs

independently of anything else happening in the

computer.

Without threads an entire program can be

held up by one CPU intensive task or one infinite

loop, intentional or otherwise. With threads the

other tasks that don't get stuck in the loop can

continue processing without waiting for the stuck

task to finish [8].

4.6 Multithreading

Multithreading as a widespread

programming and execution model allows multiple

threads to exist within the context of a single

process.

These threads share the process' resources

but are able to execute independently. The threaded

programming model provides developers with a

useful abstraction of concurrent execution.

 However, perhaps the most interesting

application of the technology is when it is applied

 3

to a single process to enable parallel execution on a

multiprocessor system [8].

4.7 Round Robin Policy

 A small unit of time, called a time

quantum is defined. The ready queue is treated as a

circular queue. New processes are added to the tail

of the ready queue. The scheduler picks the first

processes from the ready queue, sets a timer to

interrupt after 1 time quantum, and dispatches the

process [1].

5. OVERVIEW OF THE SYSTEM

5.1 System Architecture

 This system develops a concurrent system

in which processes can run in parallel. In this

system file client and file server architecture are

configured in network environment and overview

of system architecture can be seen in Figure 1.

Network

File Server

File User1

File User2

File User3

Figure 1. Overview of the System Architecture

There are five cooperated process

modules to simulate this system. They are File

Client, Request Pool, Worker Pool, PCB and File

Server modules and these components can be

shown as block diagram in Figure 2.

Client 1

Client 2

Client n

Worker

PCB

Module

File Server

Module

Request

Pool

File Client File Server

Requests

Figure 2. Block Diagram of System

The main components of this system are

the cooperated modules working together at file

server. The detail architecture of these components

can be designed in Figure 3.

Files

PCB

Client Requests

Receipt and

Queuing

Reading or

Updating Files

Storing or Reloading

status of process

Figure 3. Overview Architecture of the File

Server

In this figure, every file request from any

file user, who wants to access a file stored in file

server, is stored into Request Pool. On the other

hand, the worker threads in Worker Pool retrieve

the request and process the corresponding

operations on related files. The main attributes of

request can be shown as follows in Figure 4.

requestID requestFile accessType data sourceID

Figure 4. Definition of A Request

 4

Whenever a worker thread retrieves and

processes a request, the PCB module creates a

process control block (PCB) for each request. The

PCB structure has the following attributes as

shown in Figure 5.

ThreadID

RequestID

TargetFile

AccessType

NewFile

NewFilePtr

DataFile

DataFilePtr

Figure 5. PCB architecture

The PCB module is critical in

implementing the concurrent processes in

multithreading architecture. Since the worker

threads for each request are processed with round

robin fashion. Whenever the time quantum for each

thread is finished, the process’s latest conditions

have to be saved and need to recognize that status

for resuming. So, this system prepares the storage

area for conditional factors presented in Figure 5.

In which the Target File means the requested file to

access by file client. Access Type is what the client

wants to do on file. The Access Type here may be

read or write access. New File is essential for read-

copy-update semantic, when in which read or write

access is processed; the original file is coped to

another location for concurrent accesses.

While request is processing before

completion, it works with New File and update the

New File to Target File after processing has

finished. NewFilePtr is requested to notice the

previous work and is used to resume the process.

When the file access is ‘write’ the DataFile

maintains the data to be write on the TargetTile and

Data FilePtr is also needed for resume case.

The File Server module maintains the data

files and provides the file services such as read and

writes accesses.

The workflow of system’s processes can

be seen in Figure 6 and the working procedure can

be illustrated by the algorithm in next section

Figure 6. Process Flow Diagram

5.2 File Server Algorithm

To illustrate the flow of system’s

processes, this system needs to identify the

following notations for system parameters.

Let RP be request pool which receives request

from clients.

 ri RP (i=1,2,…,n)

Let TP be threads pool in which threads for

requests.

 Assume scheduler executes at least once every

100 milliseconds.

 Scheduler handles 10 requests per second.

 tj TP (j=1,2,…,n)

Let PCB be process control block which records

the latest status of each process.

 5

 cj PCB (j=1,2,…,n)

Let F be file server in which files exist.

 fk F (k=1,2,…,m)

 While (RP is true)

{ 1.create thread tj for each request ri

 2. create cj for each tj

 3. do concurrent process

 if access type of ti is write and new

 copy fk to fk′
 while(time is valid)

 { if access type of tj is write

 { if state of tj is new

 { write data to fk′
 if process complete

 Delete cj }

 if state of tj is resume

 { reload tj with cj attributes

 continue writing to fk′ if

process complete

 Delete cj }

 }//Write

if access type of tj is read

 { if state of tj is new

 { read data from fk

 if process complete

 Delete cj

 }

 if state of tj is resume

 { continue reading from fk

 if process complete

 Delete cj

 }

 }//Read

 }//timer

4.Switch to next thread

5.Go to step 3.

6. PERFORMANCE ANALYSIS

 The feature of file server is processing

requests by using multiple worker threads.

According to nature of thread, requests processed

by threads can be performed concurrently. In order

to show the strong point of concurrent theory,

although system performance can be better on

more concurrent work, the system can degrade the

performance when concurrent threads increase

because the system’s computing time is spent by

thread creation and deletion. In this system ten

worker threads are performing the requests.

Table 1. Evaluation Data on Processes

Increase

No of
Processing Time

Assume(Millisecond)

Process Single Thread
Ten Worker

Threads

10 343 109

20 593 312

30 796 390

40 993 402

 This paper analyses hybrid processes of

read access and write access on file size of 10

MB. The experimental results can be shown in

Table 1 and the comparison graph for processing

time of given number of hybrid processes on single

worker thread processing and multiple worker

threads processing can be depicted in Figure 7.

0

200

400

600

800

1000

1200

10 20 30 40

Single Thread

10Threads

Figure 7. Performance Analysis on increasing

processes

M
il

li
se

co
n

d
s

Number of Processes

Processes Vs Computation Time

 6

According to the experimental results,

multi worker threads require less extra processing

time when ten times of concurrent processes

increase.

7. CONCLUSION

In this system, Read_Copy Update

technique which provides read reduction in

processes’ waiting time and tolerates stale data

when read and/or write access on file without lock

concurrently. The scheduling algorithm is proposed

for allocating access request to read or write text

file on the basic of (RRB) policy with a small

unique time quantum to be concurrent access. And

in this system multithreading function is also used

for creating a new thread of execution within an

existing process rather than starting a new process

to begin a function. We have compared the

computation performance between a single thread

and ten threads on the number of processes

increasing. We have presented measurements that

demonstrate using multithread that reduces much

more processing time than using single thread. We

have tested the performance of the system by using

reading text file processes.

8. REFERENCES

[1] Abraham s., G. Peter Bare and G. Gagne,

“Operating System Concepts”, Sixth Edition

ISBN-0-471-41741-2, 2002.

[2] Allan Borodin, Brett Fleisch, “Concurrent

Reading While Writing”, Acm Transactions on

Programming Language and System, Vol.5, No.1,

January 1983.

[3] George Coulouris Jean Dollimore Tim,

“Distributed System Concepts and Design”, Third

Edition, ISBN 0-201-619/8-0,

www.pearsoneduc.com

[4] P.E.Mckenney, “Read_Copy Update: Using

Execution History to Solve Concurrency Problem”,

Senior Member,IEEE, and J.K.Slingwine.

[5] Paul E.Mckenney, “Read Copy Update”,

Lunux Texhnilogy Center,IBM Beaverton,

http://www.rdrop.com/users/paulmck

[6] “Concurrency (Computer Science)”,

http://en.eikipedia.org/wiki/Concurrency_(compute

r_science).

[7] “File Server”,

http://en.eikipedia.org/wiki/File_Server

[8] “Thread (Computer Science)”,

http://en.eikipedia.org/wiki/Thread_(ComputerScie

nce)

http://www.pearsoneduc.com/

