
101

Permission-Based Feature Selection for Android

Malware Detection and Analysis
Chit La Pyae Myo Hein

Faculty of Computer System and Technologies, University of Computer Studies Taunggyi

chitlapyae86gmail.com

Abstract — Malware are spreading around the world

and infecting not only for end users but also for large

organizations and service providers. There is a real

need of dimension reduction approach of malware

features for better detection. This system describes for

malware detection and characterization framework

which is based on Static Approach by only analyzing

the Manifest File of android application. This system

also describes a Feature Selection Approach which is

also based on Manifest File Analysis for the purpose of

dimension reducing of malware features. Firstly, a

number of Permission-Based Features are extracted by

disassembling the Manifest File of Android application.

Then, feature dimensions are reduced by proposed

Score-based Approach. The results getting from

Correlation and Information Gain are used to compare

the results of Score-Based Features Selection.

According to the experimental results, proposed a

light-weight approach can perform as equal as other

feature selection methods. After feature selection,

manifest file analysis based on malware classification

and characterization results are also described in this

system. The classification results tested by without

reducing features and the results obtained by reduced

features are compared to determine which methods or

classifiers are the best to detect malware.

Keywords— Android Security, Malware,Smartphone

I. INTRODUCTION

In the past few years, Smartphone users have

increased exponentially. The various Smartphone

age ranges of products from Nokia, Apple,

Google, Blackberry, etc. The operating systems

for Smartphone are Symbian, iOS, Android and

Blackberry. The Smartphone is viewed as

portable PCs as they have all the functionalities

of a desktop PC integrated into them. Just as

there are hackers/attackers releasing malware for

PCs, there are attackers who are now targeting

Smartphone. The main reason for this is that

mobile security is still in its initial stages and the

lack of user awareness regarding how their

devices can be undermined if they are not careful

enough.

Google is open-source operating systems.

Android, are among the most popular

Smartphone operating systems. Android is a

Linux-based operating system that also includes

key applications and middleware. In order to

fully benefit from and explore the functionalities

of Android, Google allows third party developers

to create applications and release it to the

Android Market.

Android Market is one application that is

mounted on the device that enables a user to

browse and download several paid and free

applications. It is the same as the AppStore for

iPhone. Developers will have to sign their code

and test it thoroughly to make sure it is

functioning properly without causing any kind of

harm to the user and they then release it on the

Android Market.It is however possible for

attackers to release malware on Android Market.

Google is currently making a success at cleaning

the market and making it free from malware.

However, attackers can create malware or

patches for existing applications that once

installed make the application behave as a

malware or they can simply take an existing

application and disassemble it, alter the code to

enable it functions abnormally, and repackage

the application.

Malware on Android have been huge in

number and attackers are constantly discovering

newer methods to crack into the devices. The

main reason for this is because Smartphone like

Android do not just use as a portable telephone

these days. Android devices can access the

internet, make online bank transmissions,

102

manage social networks, etc. All these

functionalities of a mobile phone seem very

tempting for an attacker to obtain information

about the user and use it to his/her benefit.

This research purpose to develop malware

detection of static based on deriving of

permission request using the manifest file of the

application. The static approach provides human

understandable and explainable terms, which do

not prescribe additional post processing.

Furthermore, in a court of law a judge and a jury

may understand the reasoning behind the

extracted terms, which are very important under

computational forensics investigation of

numerical evidences.

II. LITERATURE REVIEW

Many researchers propose complicated

extensions to fortify the Android‟s security

framework. They mainly focus on protecting the

user data and mitigating some types of privilege

escalation attacks. This section recent some of

the most well-known approaches to extract the

malware list in android technologies.[11]

Alternative research has focused on using

machine learning techniques to identify malware.

Sanz et al. (2012) applied several types of

classifiers to the permissions, ratings, and static

strings of 820 applications to see if they could

predict application categories. They applied this

by using the category scenario as a stand-in for

malware detection. [4] Shabtai et al. (2013)

similarly built a classifier for Android games and

tools, as a proxy for malware detection. [15] Ryo

Sato, Daiki Chiba and Shigeki Goto proposes a

new method for detecting Android malware by

analyzing only manifest files based on malware

score. [13] Zhou et al. (2012) found real malware

in the wild with DroidRanger, a malware

detection system that uses permissions as one

input. [14] DroidMat (2013) focuses on using

attributes of the manifest to trace API calls

requiring permissions. [12] N. Peiravian and X.

Zhu (2013) propose a rule-based security

mechanism designed to prevent malware at

install-time. [1] Explores the use of machine

learning algorithms for malware detection using

permissions and API calls. The studies in Mila

(2009) and android (2015) Android Content

License “URL” www.source.android.com

/license.html retrieved focus on efficient,

scalable, and accurate malware detection in large

Android markets.

III. MALWARE DETECTION

A. Proposed Malware Detection FrameWork

The first purpose of malware system is to

reduce the detecting and classification for

malware by introducing the features selection

and extraction step in the process. The second

purpose is to classify and characterize the

malware by only taking the manifest file analysis

in opposition to an existing machine learning

approach.

The cost of analysis and risk for detecting

malware can decrease by means of static

approach rather than a dynamic approach.

Figure 1. System flow diagram of the proposed system

Therefore, this system is also based on static

(code-based) approach. The components of this

system are as follows:

 (i) Android Application File Accessing

 Component

 (ii) Feature Selection Components

 (iii) Malware Detecting Component

 (iv) Malware Classification Component

 (v) Malware Characterization Components

Evaluate the Characterized & Classified Results Cause of

Feature Selection

Select the Malware

Features & Classify

Select the Malware

Features & Characterize

Malware Features Malware Features

Evaluation Result

Accept Android Application (APK)

 Extract Features from Manifest File

Manifest File

103

The system flow of the whole proposed

system is illustrated in Figure 1. The feature

selection methods follow the Feature Ranking

approach and, using a specific metric to compute

the rank and return a weight average value for

each feature individually. By using this attribute

selection method, the system can select generic

features to merge the relevant and meaningful

features for to input the system.

The second part of the system is to produce

the feasible set of features. To produce this set of

features, merge common features and based

features of each detection type. The six parts of

the system are a classification.

In this classification step, BayesNet (BN),

Naïve Bayes, Multilayer Perceptron (MLP), K-

Nearest Neighbor, J48 and Random Forest

classifier are utilized to classify the detection

types. Finally, the system can prove the

performances of the proposed selecting features

are higher than unselected features.

1. Data Collection

In this system used different methods for

retrieving the application samples from their

respective websites, as well as retrieving

information from the malicious applications.

2. Benign Dataset

The gathering of the market data set is get

from four separate application markets,

consisting of multiple features, ranging from

developer identity to request permissions. In

order to obtain as many application samples as

possible, four Android application markets were

chosen; Google Play [43] /AppBrain [58],

Amazon App Store for Android, F-Droid [62]

and SlideMe [78] as shown in Table I.

TABLE I

NUMBERS OF BENIGN FOR EACH CATEGORY

All Categories Number of Application

Development 35

Phone & SMS 38

Wallpaper 50

Office 51

Science & Education 81

Multimedia 174

System 67

Games 165

Internet 149

Security 25

Reading 51

Navigation 112

Children 2

Total 1000

3. Malware Dataset

The experimental study of this work is

primarily taken from several sources of

malicious data set. Numerous researchers

propose complicated extensions to fortify the

Android‟s security framework. The candidates

included Symantec's Threat Explorer database,

F-Secures Threat Description database [31] and

similar sources, in addition to the Contagio

Mobile Dump [74]. Databases of Symantec and

F-Secure were ultimately decided against

because it was impractical to automatically

collect information from these databases.

Additionally, the technical details were produced

by hand by the researchers and as such the

information was inconsistent as to whether or not

they listed the permissions requested by the

malware.

Cantagio collects and presents samples of

malicious applications uploaded to the website

by the public, and anyone can download these

samples from their database as showed in Table

II.

104

TABLE II

NUMBERS OF MALWARE FOR EACH CATEGORY

All Categories Number of Application

TROJAN 171

ESCOFPRIV 199

PREMSMS 222

INFOSTEAL 189

Root Exploit 200

Total 981

B. Proposed Score-Based Feature Selection

This system also proposes a feature selection

method based on manifest file analysis approach.

Process flow of the propose method is described

in Figure 2.

Figure 2. FLOW OF THE PROPOSED SCORE-BASED

FEATURE SELECTION

The nature of mobile android application

(APK) files, how to extract the features from

mobile applications is described in this section.

The detail explanation of how to process the

proposed score-based feature selection is also

referred to in the section below.

Firstly, I extracted the necessary features to

analyze from sample applications (benign and

malware). Then, I built dataset in (CSV) comma

separated values file format from the extracted

features. In this system used these two datasets to

distinguish malware and benign applications by

machine learning approaches. Each record

comprises of the summary data of 134

permission features. Experts in malware

detection labeled the dataset information as

either „Ben‟ or „Mlw.‟ The labeling process

made use of a malware dataset considered „Mlw‟

and a benign dataset categorized „Ben.‟

 Finally, the ultimate dataset meant the

integration of malware with normal datasets.

Then, one of the features used in the Weka pre-

processor weka.filters. unsupervised. inatance.

randomize shuffled the records in the final

dataset.

To obtain features set for samples present in

data set; the system used a Java based Android

package profiling tool for automated reverse

engineering of the .apk files named as Apk

Analyser. This tool unpacks and decompiles the

input .apk files to corresponding .dex and

AndroidManifest.xml files. After doing reverse

engineering, a set of detectors were applied to

the reverse engineered .apk files to detect

properties used to build the profile for APK file.

The feature vector obtained after property

detection contains values for selected features as

binary numbers (0 and 1), which is a suite of

comma separated values. Let an application

characteristic TA obtained from the

ApkAnalyser detector is defined by a random

variable:

1 if discovered by the catches sample

0 Otherwise

TA=

To generate the dataset, the first selected the

samples. Initially, the system collected 400

samples. Next, the system normalized the values

given by different antivirus vendors. The goal of

this step was to ascertain their reliability

detecting malware in Android. To this end, the

system assumed that every sample that was

detected as malware by at least one antivirus was,

indeed, malware. Then, the system evaluates the

request rate of scoring each malware sample with

respect to the complete malware dataset.

TA

RP
SB i

i

Calculate Feature Score iteratively with different

threshold

Accept & Extract Android Application Package

Extract Features from Manifest File

Select Features with High Score

Score-Based Feature Selection

Selected Features

105

Where is the number of samples detected

by i-th malware and TA is the total number of

application samples.

C. Feature Selection of With and Without

Actually, the count 134 android system

permissions according to android 4.3 Jelly Bean

with API level-18 considering all of android

permissions as a feature set will produce an

enormous feature vector for each application. So,

it is required to reduce the number of the

application features, where the high dimension

data makes testing and training of general

classification methods complicated.

The goal of data reduction is to find a

minimum set of features such that the resulting

probability distribution of the data classes is as

close as possible to the original distribution

obtained using all features. Using the reduced set

of features has additional benefits. It reduces the

number of features appearing in the discovered

patterns, helping to make the patterns easier to be

understood.

D. Characterization

Categorizing and classifying mobile

applications according to their potential for

privacy invasion provides detailed information

about what is being put at risk by installing and

agreeing to various permission and privilege

requests by mobile applications. This

categorization is based on the permissions

requested by an application as detail description

in below.

The Cantagio samples in our experiment

comprised 12 different families as shown in

Table III containing 1000 Android malware

samples, but only 250 were used. The machine

learning process had three phases: (1) data

collection, which captured permission; (2)

feature selection and extraction; and (3) the

machine learning classifier. For the normal

dataset, Application are selected the top 20 free

applications from Google Play as express in

Figure 3.

TABLE III

CATEGORIES OF PERMISSION CHARACTERIZATION

Number Description

1 Permissions for sdcard interaction

2 Permissions for things that cost money

3 Permissions associated with telephony state

4 Permissions for special development tools

5 Permissions for accessing accounts

6 Permissions for accessing messages

7 Permissions for accessing location info

8 Permissions for accessing hardware

9 Permissions for accessing networks

10
Permissions for accessing personal info

(contacts and calendar)

11 Permissions for low-level system interaction

12 Private (signature-only)

Figure 4 shows the top 20 permissions

requested and required by both malicious and

benign applications. Compare the results against

their statistics, the top three requested

permissions are the same. For malicious

applications, the top three requested permissions

are INTERNET, READ CONTACTS, and

ACCESS NETWORK STATE. For benign

applications, the top three requested permissions

are

CALL_PHONE,CHANGE_WIFI_STATE,and

READ_PHONE_STATE. Although the number

of malicious application, the system evaluated is

less than, the ranks of requested permissions are

similar.

Figure 4 show the value of malware

applications requesting certain number of

permission, respectively. It is shown that the best

result in Escofpriv of malware application

requesting certain number of Risky3 permission.

It can be easily seen that lowest level of

Escofpriv malware application at Risky1.

Compare the categories of Risky2 level as the

almost same level of Risky3 malware detection

characterization. Trajon, InfoSt, PreSMS and

RootEx malware characterization are the lowest

value of permission in usage level.

106

Figure 3. TOP MOST REQUEST PERMISSIONS FROM THE

APPLICATIONS

Figure 4. Compare the accuracy result using 250

applications

Catagorization of Risky Permission

Permissions have different danger levels

depending on the functions they allow the

application to perform and are consequently

classified in protection level groups. Likewise,

through this attribute, it is possible to determine

which applications have access to the

permission:

Risk1: They pose a risky1 factor and typically

only affect the application‟s scope. Risk1

permissions are granted by the system

automatically without explicit approval of the

user.

Risk2: They are risky2 permissions that allow

costly access to services. The permissions can be

granted by the user during installation. If the

permission request is denied, then the application

is not installed.

Risk3: They are risky3 permissions are only

granted if the requesting application is signed by

the same developer that defined the permission.

Risk3 permissions are useful for restricting

component access to a small set of applications

trusted and controlled by the developer.

Identification of Risky Permission

TROJAN pattern: ACCESS COARSE

LOCATION, ACCESS FINE LOCATION,

CALL PHONE, INTERNET, MOUNT

UNMOUNT FILESYSTEMS, READ

CONTACTS, READ PHONE STATE, SEND

SMS, SET WALLPAPER, WRITE

CONTACTS, WRITE EXTERNAL STORAGE.

The Trojan requests a rather distinct set of

permissions, many of which are not often

requested by legitimate applications. Using this

pattern on the data set resulted in no hits from

the legitimate markets, only the malicious data

set.

ESCOFPRIV pattern: INTERNET, ACCESS

NETWORK STATE, READ PHONE STATE,

ACCESS WIFI STATE, WRITE EXTERNAL

STORAGE, ACCESS COARSE LOCATION,

ACCESS FINE LOCATION, RECEIVE SMS,

SEND SMS, READ SMS, CALL PHONE,

PROCESS OUTGOING CALLS, DELETE

PACKAGES, INSTALL PACKAGES,

RECEIVE BOOT COMPLETED.

This pattern returns only the Escofpriv

samples malware from the malicious data set.

Like the Trojan pattern, this pattern can almost

uniquely identify Escofpriv infected applications.

PREMSMS pattern: SEND SMS, READ

SMS, WRITE SMS, RECEIVE SMS, DEVICE

POWER, WRITE APN SETTINGS, ACCESS

NETWORK STATE, BROADCAST

107

PACKAGE REMOVED, ACCESS WIFI

STATE, CHANGE WIFI STATE, WAKE

LOCK, INTERNET, WRITE EXTERNAL

STORAGE, READ PHONE STATE, KILL

BACKGROUND PROCESSES.

PremSMS effectively means that the malware

can be uniquely identified based only on its

permission set, this pattern is effective in

determining the presence of this malware.

INFOSTEAL pattern: READ CALENDAR,

READ CONTACTS, READ USER

DICTIONARY, WRITE CALENDAR, WRITE-

CONTACTS, WRITE USER DICTIONARY,

SET ALARM, READ HISTORY

BOOKMARKS, and WRITE HISTORY

BOOKMARKS.

Infosteal pattern READ CONTACT

PERMISSION, which means that it is install

application: Allows an application to read the

user‟s contacts data.

 ROOT EXPLOIT pattern: ACCESS

NETWORK STATE, ACCESS WIFI STATE,

BLUETOOTH, INTERNET, NFC, USE SIP,

ACCOUNT MANAGER.

 Using this pattern against the data set resulted

in 981 authorize applications identified as Root

exploit.

TABLE IV

IDENTIFICATION OF RISKY ASSESSMENT

Table IV shows the requested permissions in

the benign application and malware datasets.

Risk level of identification grate R2: CAMERA

is the most frequently used permission by both

the benign applications and malware. There are

many reasons to request permission for picture

access: some of the applications need to log in;

some are designed to use internet like browsers

and email clients; some need to load

advertisement etc. As a result, Camera-related

permissions, such as ACCESS NETWORK

STATE and ACCESS WIFI STATE, become

very popular. Another set of widely used

permissions are location related ones such as

ACCESS FINE LOCATION and ACCESS

COARSE LOCATION for location based

services as defined on grate level of R1, etc.

Another observation is that some applications

of permissions are requested by such malware

applications in the Cantagio dataset. Malware are

more favor of changing the settings and use

money-related services such as short message

service (SMS). Changing settings, especially

changing the network settings, generally is the

first step before a malware performs any

malicious activity. Sometimes malware even try

to kill background processes, which could help

them avoid being detected by anti-virus

applications. Characterization system can see

that the usage pattern of SMS related

permissions is quite different between the benign

applications and the malware applications and

many malware applications attempt to request

SMS related permissions. SMS is also a risky

permission of private threat (Risk3) that is more

likely requested by malware applications.

Describe the data usage of SMS include the data

category of communication as shown in Table V.

Identification

Grate
Permission request

R1

ACCESS_COARSE_LOCATION,ACCESS_FI

NE_LOCATION,ACCESS_NETWORK_STA
TE,ACCESS_WIFI_STATE,BLUETOOTH_A

DMIN,GET_TASK,READ_CALENDAR,REA

D_HISTORY_BOOKMARKS,READ_LOGS,
READ_USER_DICTIONARY,RECEIVE_WA

P_PUSH,SUBSCRIBED_FEEDS_READ

R2

CAMERA_PROCESS_OUTGOING,CALLS,R

EAD_CALL_LOG,READ_CONTACTS,REA

D_EXTERNAL_STORAGE,READ_SMS,REA

D_SOCIAL_STREAM.RECEIVE_MMS,REC

EIVE_SMS,RECORD_AUDIO,WRITE_EXTE

RNAL_STORAGE

R3

AUTHENTICATE_ACCOUNTS,GET_ACCO

UNTS,USE_CREDENTIALS

108

TABLE V

IDENTIFICATION OF RISKY ASSESSMENT

Data

Category

Data

Usage

Permission

Request

Private

Threat
R

1

R

2

R

3

Sensor/Lo

cation

Locatio

n

Audio

Video

ACCESS_COARSE_LO

CATION

ACCESS_FINE_LOCATI

ON

BLUETOOTH_ADMIN
ACCESS_NETWORK_S

TATE

ACCESS_WIFI_STATE
READ_SOCIAL_STREA

M

RECORD_AUDIO
CAMERA

External

Storage

 WRITE_EXTENAL_STO

RAGE

READ_EXTERNAL_ST

ORAGE

Communi

cation

SMS

MMS

Voice

Wap

Push

RECEIVE_SMS
READ_SMS
RECEIVE_MMS
PROCESS_OUTGOING_

CALLS

RECEIVE_WAP_PUSH

IV. CONCLUSIONS

Mobile malware performs malicious activities

like stealing confidential information, sending

messages, SMS, reading contacts and can even

harm by exploiting the data. Malware is

spreading around the world and infecting not

only for end users, but also for large

organizations and service providers. Malware

classification is a vital component and works

together with malware identification to prepare

the right and effective malware antidote.

In this research, malware classification and

analysis have been used to determine whether a

program has malicious intent or not. In this study,

collected Android applications have been

classified using machine learning approaches

whether they are malware or benign. Static

approach has been used to classify and detect

malware. Several permission features from

several manifest files have been extracted. A

score-based feature selection approaches, which

is only based on manifest file analysis have been

proposed and evaluated as a lightweight

approach for malware detection. And then, the

selected malware was detected using different

classifier. According to the experimented

consequences, the proposed score-based feature

selection has been performed similarly with

existing feature selection methods. (Correlation-

based and Information Gain). Moreover, by

using static-based malware approach, it is more

efficient and adaptable because the static

approach has the advantages of less cost rather

than a dynamic approach.

Therefore, the proposed approach using

permissions is effective for malware detection

which achieved an average rate of malware

detection accuracy. Not only malware

classification, but also malware characterization

is also important to inform the user and install

the malware application, because the user is not

aware to install several applications of their

device. The Android application requires several

permissions to work. An essential step to install

an Android application into a mobile device is to

allow all permissions requested by the

application.

In this work, malware detection system has

been provided a systematic study on the

exploration of permission-induced risk in

Android apps on a large-scale in three levels.

First, the research has been focused on ranking

all the individual permissions request by using

three methods. Second, the research has been

identified the subsets of top most permissions

with sequential forward selection as well as with

score-based. And then, the evaluation of this

system has been employed several algorithms,

BN, MLP, J48, KNN and RF, to detect malware

applications based on the identified subsets of

exploit permissions. The design also constructs

top most demand sets with feature ranking to

detect malware applications with different

characteristics. The large official application data

set consisting of 1000 benign applications and

981 malware applications, as well as a third-

party application set have been used for the

evaluation.

109

The focus of this research is tantamount to

design a simple and easy-to-evaluate framework

for analyzing mobile privacy. Categorizing and

classifying mobile applications according to their

potential for privacy invasion provides detailed

information about what is placed at risk by

installing and agreeing to various permission and

privilege requests by mobile applications. This

categorization has been based on the permissions

requested by an application. Malware detection

has been discussed and analyzed in depth the

effectiveness as well as the limitations on the

detection of malware applications with only

permission requests. While the permission

requests characterized the behaviors of apps to

certain extent and the detection can be effective,

only considering the permissions would have

difficulties to improve the current detection

accuracy, as the permission vectors are very

sparse and binary number type. The results

obtained from a user training test using five

selected classifiers to perform the experiments

have been presented in Appendix A. The table

showed the performance of each classifier in ten

(100 and 1000 applications) experiment sets for

malware detection. Classifier performance has

been needed to be measured with five evaluation

metrics, namely TPR, FPR, precision, recall and

f-measure.

The results of the average error rates and

accuracy for different feature sets with and

without category information have been

compared. The description has been observed

that an increasing accuracy and decreasing error

rates when larger numbers of features are utilized

to train the classifier. It was also clear that by

exploiting the category information; there was a

clear improvement in the accuracy and error

rates. Also, note that there was almost a

difference of 86%, 95% in the performance using

with and without feature sets indicating the

importance of feature ranking based on the

frequency of permission request.

In the experiments, the system has been used

all the application data for permission ranking. In

the study, Information Gain, Correlation-based

as well as score-based methods have been used

for ranking the permissions which contained the

malware and benign features. The ranking results

for the top FSI, FSII and FSIII permissions were

presented in Appendix A and 15 permission top

most request FSI was the lowest ranked features.

It has been observed that Information Gain and

Correlation-based produced the same top most

requests set, although the ranking order for the

first feature permissions was different. The

number of intersections of the top request

permissions that have been generated by

Correlation-based and Information Gain have

been nearly consistent with the ranking results.

The only one difference permission of score-

based in the ranking results was set in boldface.

According to the classification results, the

classification of top most requests FSI using

1000 applications has been demonstrated that the

classifier bayes network has been produced a

higher FPR result with 0.39% compared to the k-

nearest neighbor in 0.112%. This has been

indicated that the bayes network was less

effective than another selected classifier for

malware detection.

From the classification of top most requests

FSII using 1000 samples in the current result, the

J48 classifier has been achieved 87% and RF has

been achieved 92% detection rate accuracy.

Whereas the highest detection rate attained in

this research was 87% with the KNN classifier.

Therefore, the observed results indicate the

comprehensiveness and efficiency of this study.

V. FUTURE WORK

The current work discusses and analyzes in

depth the effectiveness as well as the limitations

on the detection of malware applications with

only permission requests. While the permission

requests characterize the behaviors of

applications to certain extent and the detection

can be effective, only considering the

permissions would have difficulties to improve

the current detection accuracy, as the permission

110

vectors are very sparse and binary number. In the

future work, there are exploring more relevant

features that inherit in application in order to

improve the detection accuracy of Android

malware application.

ACKNOWLEDGMENT

First of all, I would like to thank Union

Minister of Science and Technology for full

facilities support during the Ph.D. Course at the

University of Computer Studies, Mandalay.

I would like to thank a lot to all my teachers

for their mentoring, encouragement, and

recommending the research.

REFERENCES

[1] K. Allix, T. F. D. A. Bissyande, J. Klein, and Y. Le

Traon, “Machine Learning-Based Malware Detection

for Android Applications: History Matters!,” 2014.

[2] D. Arp, M. Spreitzenbarth, M. H¨ubner, H. Gascon,

K. Rieck, and C. Siemens, “DREBIN: Effective and

Explainable Detection of Android Malware in Your

Pocket,” 2014.

[3] Z. Aung and W. Zaw, “Permission-based android

malware detection,” International Journal Of

Scientific & Technology Research, vol. 2, no. 3, 2013.

[4] G. Canfora, F. Mercaldo, and C. A. Visaggio, “A

classifier of malicious android applications,” in

Availability, Reliability and Security (ARES), 2013

Eighth International Conference on, pp. 607–614,

IEEE, 2013.

[5] W. Enck, M. Ongtang, and P. McDaniel, “On

lightweight mobile phone application certification,”

in Proceedings of the 16th ACM conference on

Computer and communications security, pp. 235–245,

ACM, 2009.

[6] L. Gomez and I. Neamtiu, “A Characterization of

Malicious Android Applications,” tech. rep.,

Technical report, University of California, Riverside,

2011.

[7] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,

“Riskranker: scalable and accurate zero-day android

malware detection,” in Proceedings of the 10th

international conference on Mobile systems,

applications, and services, pp. 281–294, ACM, 2012

[8] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu,

“Performance Evaluation on Permission-Based

Detection for Android Malware,” in Advances in

Intelligent Systems and Applications-Springer,

2013.Volume 2, pp. 111–120,

[9] T.M. Mitchell. Machine Learning. McGraw-Hill

Series in Computer Science.McGraw-Hill, 1997.

[10] C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner, M.

Gissing, A. Marsalek, J. Leibetseder, and O.

Prevenhueber, “Android security permissions–can we

trust them?,” in Security and Privacy in Mobile

Information and Communication Systems, pp. 40–51,

Springer, 2012.

[11] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero,

and P. G. Bringas, “On the automatic categorization

of android applications,” in Consumer

Communications and Networking Conference

(CCNC), 2012 IEEE, pp. 149–153, IEEE, 2012.

[12] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J.

Nieves, P. G. Bringas, and G. A´ lvarez

Maran˜o´n,“MAMA: Manifest Analysis for Malware

Detection in Android,” Cybernetics and Systems, vol.

44,no. 6-7, pp. 469–488, 2013

[13] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P.

G. Bringas, and G. A´ lvarez, “Puma: Permission

usage to detect malware in android,” in International

Joint Conference CISIS12-ICEUTE´ 12-SOCO´12

Special Sessions, pp. 289–298, Springer, 2013.

[14] B.P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-

Rotaru, and I. Molloy, “Android permissions: a

perspective combining risks and benefits,” in

Proceedings of the 17th ACM symposium on Access

Control Models and Technologies, pp. 13–22, ACM,

2012.

[15] R. Sato, D. Chiba, and S. Goto, “Detecting Android

Malware by Analyzing Manifest Files,” Proceedings

of the Asia-Pacific Advanced Network, vol. 36, pp.

23–31, 2013.

[16] Google Inc. Android Developers. Manifest.

permission.

http://developer.android.com/reference/android/Mani

fest.permission.html.

[17] Google Inc. Android Developers. Security and

Permissions

http://developer.android.com/guide/topics/security/se

curity.html.

[18] Permission>Android Developer - API Guides –

Android

Manifest.http://developer.android.com/guide/topics/

manifest/permission-element.html

[19] Cantagio mobile malware-mini-dump

http://contagiominidumo.blogspot.com

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://contagiominidumo.blogspot.com/

