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Abstract — Malware are spreading around the world 

and infecting not only for end users but also for large 

organizations and service providers. There is a real 

need of dimension reduction approach of malware 

features for better detection. This system describes for 

malware detection and characterization framework 

which is based on Static Approach by only analyzing 

the Manifest File of android application. This system 

also describes a Feature Selection Approach which is 

also based on Manifest File Analysis for the purpose of 

dimension reducing of malware features. Firstly, a 

number of Permission-Based Features are extracted by 

disassembling the Manifest File of Android application. 

Then, feature dimensions are reduced by proposed 

Score-based Approach. The results getting from 

Correlation and Information Gain are used to compare 

the results of Score-Based Features Selection. 

According to the experimental results, proposed a 

light-weight approach can perform as equal as other 

feature selection methods. After feature selection, 

manifest file analysis based on malware classification 

and characterization results are also described in this 

system. The classification results tested by without 

reducing features and the results obtained by reduced 

features are compared to determine which methods or 

classifiers are the best to detect malware. 

Keywords—  Android Security, Malware,Smartphone 

I. INTRODUCTION 

In the past few years, Smartphone users have 

increased exponentially. The various Smartphone 

age ranges of products from Nokia, Apple, 

Google, Blackberry, etc. The operating systems 

for Smartphone are Symbian, iOS, Android and 

Blackberry. The Smartphone is viewed as 

portable PCs as they have all the functionalities 

of a desktop PC integrated into them. Just as 

there are hackers/attackers releasing malware for 

PCs, there are attackers who are now targeting 

Smartphone. The main reason for this is that 

mobile security is still in its initial stages and the 

lack of user awareness regarding how their 

devices can be undermined if they are not careful 

enough. 

Google is open-source operating systems. 

Android, are among the most popular 

Smartphone operating systems. Android is a 

Linux-based operating system that also includes 

key applications and middleware. In order to 

fully benefit from and explore the functionalities 

of Android, Google allows third party developers 

to create applications and release it to the 

Android Market. 

Android Market is one application that is 

mounted on the device that enables a user to 

browse and download several paid and free 

applications. It is the same as the AppStore for 

iPhone. Developers will have to sign their code 

and test it thoroughly to make sure it is 

functioning properly without causing any kind of 

harm to the user and they then release it on the 

Android Market.It is however possible for 

attackers to release malware on Android Market. 

Google is currently making a success at cleaning 

the market and making it free from malware. 

However, attackers can create malware or 

patches for existing applications that once 

installed make the application behave as a 

malware or they can simply take an existing 

application and disassemble it, alter the code to 

enable it functions abnormally, and repackage 

the application. 

Malware on Android have been huge in 

number and attackers are constantly discovering 

newer methods to crack into the devices. The 

main reason for this is because Smartphone like 

Android do not just use as a portable telephone 

these days. Android devices can access the 

internet, make online bank transmissions, 
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manage social networks, etc. All these 

functionalities of a mobile phone seem very 

tempting for an attacker to obtain information 

about the user and use it to his/her benefit. 

This research purpose to develop malware 

detection of static based on deriving of 

permission request using the manifest file of the 

application. The static approach provides human 

understandable and explainable terms, which do 

not prescribe additional post processing. 

Furthermore, in a court of law a judge and a jury 

may understand the reasoning behind the 

extracted terms, which are very important under 

computational forensics investigation of 

numerical evidences. 

  

II. LITERATURE  REVIEW 

Many researchers propose complicated 

extensions to fortify the Android‟s security 

framework. They mainly focus on protecting the 

user data and mitigating some types of privilege 

escalation attacks. This section recent some of 

the most well-known approaches to extract the 

malware list in android technologies.[11] 

Alternative research has focused on using 

machine learning techniques to identify malware. 

Sanz et al. (2012) applied several types of 

classifiers to the permissions, ratings, and static 

strings of 820 applications to see if they could 

predict application categories. They applied this 

by using the category scenario as a stand-in for 

malware detection. [4] Shabtai et al. (2013) 

similarly built a classifier for Android games and 

tools, as a proxy for malware detection. [15] Ryo 

Sato, Daiki Chiba and Shigeki Goto proposes a 

new method for detecting Android malware by 

analyzing only manifest files based on malware 

score. [13] Zhou et al. (2012) found real malware 

in the wild with DroidRanger, a malware 

detection system that uses permissions as one 

input. [14] DroidMat (2013) focuses on using 

attributes of the manifest to trace API calls 

requiring permissions. [12] N. Peiravian and X. 

Zhu (2013) propose a rule-based security 

mechanism designed to prevent malware at 

install-time. [1] Explores the use of machine 

learning algorithms for malware detection using 

permissions and API calls. The studies in Mila 

(2009) and android (2015) Android Content 

License “URL” www.source.android.com 

/license.html retrieved focus on efficient, 

scalable, and accurate malware detection in large 

Android markets. 

III. MALWARE DETECTION 

A. Proposed Malware Detection FrameWork 

The first purpose of malware system is to 

reduce the detecting and classification for 

malware by introducing the features selection 

and extraction step in the process. The second 

purpose is to classify and characterize the 

malware by only taking the manifest file analysis 

in opposition to an existing machine learning 

approach. 

The cost of analysis and risk for detecting 

malware can decrease by means of static 

approach rather than a dynamic approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System flow diagram of the proposed system 

Therefore, this system is also based on static 

(code-based) approach. The components of this 

system are as follows: 

          (i) Android Application File Accessing 

      Component 

          (ii)  Feature Selection Components 

          (iii) Malware Detecting Component 

          (iv) Malware Classification Component  

          (v) Malware Characterization Components 

Evaluate the Characterized & Classified  Results Cause of

Feature Selection

Select the Malware

Features & Classify

Select the Malware

Features & Characterize

Malware Features Malware Features

Evaluation Result

Accept  Android Application (APK)

 Extract Features from Manifest File

Manifest File
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The system flow of the whole proposed 

system is illustrated in Figure 1. The feature 

selection methods follow the Feature Ranking 

approach and, using a specific metric to compute 

the rank and return a weight average value for 

each feature individually. By using this attribute 

selection method, the system can select generic 

features to merge the relevant and meaningful 

features for to input the system.  

The second part of the system is to produce 

the feasible set of features. To produce this set of 

features, merge common features and based 

features of each detection type. The six parts of 

the system are a classification.  

In this classification step, BayesNet (BN), 

Naïve Bayes, Multilayer Perceptron (MLP), K-

Nearest Neighbor, J48 and Random Forest 

classifier are utilized to classify the detection 

types. Finally, the system can prove the 

performances of the proposed selecting features 

are higher than unselected features. 

1. Data Collection  

In this system used different methods for 

retrieving the application samples from their 

respective websites, as well as retrieving 

information from the malicious applications.  

2. Benign Dataset   

The gathering of the market data set is get 

from four separate application markets, 

consisting of multiple features, ranging from 

developer identity to request permissions. In 

order to obtain as many application samples as 

possible, four Android application markets were 

chosen; Google Play [43] /AppBrain [58], 

Amazon App Store for Android, F-Droid [62] 

and SlideMe [78] as shown in Table I. 

 

 

 

 

 

 

 

TABLE I 

NUMBERS OF BENIGN FOR EACH CATEGORY 

All Categories Number of Application 

Development 35 

Phone & SMS 38 

Wallpaper 50 

Office 51 

Science & Education 81 

Multimedia 174 

System 67 

Games 165 

Internet 149 

Security 25 

Reading 51 

Navigation 112 

Children 2 

Total 1000 

3. Malware Dataset  

The experimental study of this work is 

primarily taken from several sources of 

malicious data set. Numerous researchers 

propose complicated extensions to fortify the 

Android‟s security framework. The candidates 

included Symantec's Threat Explorer database, 

F-Secures Threat Description database [31] and 

similar sources, in addition to the Contagio 

Mobile Dump [74]. Databases of Symantec and 

F-Secure were ultimately decided against 

because it was impractical to automatically 

collect information from these databases. 

Additionally, the technical details were produced 

by hand by the researchers and as such the 

information was inconsistent as to whether or not 

they listed the permissions requested by the 

malware.  

Cantagio collects and presents samples of 

malicious applications uploaded to the website 

by the public, and anyone can download these 

samples from their database as showed in Table 

II. 
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TABLE II 

NUMBERS OF MALWARE FOR EACH CATEGORY 

All Categories Number of Application 

TROJAN 171 

ESCOFPRIV 199 

PREMSMS 222 

INFOSTEAL 189 

Root Exploit 200 

Total 981 

B. Proposed Score-Based Feature Selection 

This system also proposes a feature selection 

method based on manifest file analysis approach. 

Process flow of the propose method is described 

in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  FLOW OF THE PROPOSED SCORE-BASED 

FEATURE SELECTION 

The nature of mobile android application 

(APK) files, how to extract the features from 

mobile applications is described in this section. 

The detail explanation of how to process the 

proposed score-based feature selection is also 

referred to in the section below. 

Firstly, I extracted the necessary features to 

analyze from sample applications (benign and 

malware). Then, I built dataset in (CSV) comma 

separated values file format from the extracted 

features. In this system used these two datasets to 

distinguish malware and benign applications by 

machine learning approaches. Each record 

comprises of the summary data of 134 

permission features. Experts in malware 

detection labeled the dataset information as 

either „Ben‟ or „Mlw.‟ The labeling process 

made use of a malware dataset considered „Mlw‟ 

and a benign dataset categorized „Ben.‟ 

 Finally, the ultimate dataset meant the 

integration of malware with normal datasets. 

Then, one of the features used in the Weka pre-

processor weka.filters. unsupervised. inatance. 

randomize shuffled the records in the final 

dataset. 

To obtain features set for samples present in 

data set; the system used a Java based Android 

package profiling tool for automated reverse 

engineering of the .apk files named as Apk 

Analyser. This tool unpacks and decompiles the 

input .apk files to corresponding .dex and 

AndroidManifest.xml files. After doing reverse 

engineering, a set of detectors were applied to 

the reverse engineered .apk files to detect 

properties used to build the profile for APK file. 

The feature vector obtained after property 

detection contains values for selected features as 

binary numbers (0 and 1), which is a suite of 

comma separated values. Let an application 

characteristic TA obtained from the 

ApkAnalyser detector is defined by a random 

variable: 

1 if discovered by the catches sample

0  Otherwise

 
TA=

 
To generate the dataset, the first selected the 

samples. Initially, the system collected 400 

samples. Next, the system normalized the values 

given by different antivirus vendors. The goal of 

this step was to ascertain their reliability 

detecting malware in Android. To this end, the 

system assumed that every sample that was 

detected as malware by at least one antivirus was, 

indeed, malware. Then, the system evaluates the 

request rate of scoring each malware sample with 

respect to the complete malware dataset. 

TA

RP
SB i

i 
 

Calculate Feature Score iteratively with different

threshold

Accept & Extract Android Application Package

Extract Features from Manifest File

Select Features with High Score

Score-Based Feature Selection

Selected Features
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Where  is the number of samples detected 

by i-th malware and TA is the total number of 

application samples. 

C. Feature Selection of With and Without 

Actually, the count 134 android system 

permissions according to android 4.3 Jelly Bean 

with API level-18 considering all of android 

permissions as a feature set will produce an 

enormous feature vector for each application. So, 

it is required to reduce the number of the 

application features, where the high dimension 

data makes testing and training of general 

classification methods complicated.  

The goal of data reduction is to find a 

minimum set of features such that the resulting 

probability distribution of the data classes is as 

close as possible to the original distribution 

obtained using all features. Using the reduced set 

of features has additional benefits. It reduces the 

number of features appearing in the discovered 

patterns, helping to make the patterns easier to be 

understood. 

D. Characterization 

Categorizing and classifying mobile 

applications according to their potential for 

privacy invasion provides detailed information 

about what is being put at risk by installing and 

agreeing to various permission and privilege 

requests by mobile applications. This 

categorization is based on the permissions 

requested by an application as detail description 

in below. 

The Cantagio samples in our experiment 

comprised 12 different families as shown in 

Table III containing 1000 Android malware 

samples, but only 250 were used. The machine 

learning process had three phases: (1) data 

collection, which captured permission; (2) 

feature selection and extraction; and (3) the 

machine learning classifier. For the normal 

dataset, Application are selected the top 20 free 

applications from Google Play as express in 

Figure 3. 

TABLE III 

CATEGORIES OF PERMISSION CHARACTERIZATION 

Number Description 

1 Permissions for sdcard interaction  

2 Permissions for things that cost money  

3 Permissions associated with telephony state  

4 Permissions for special development tools  

5 Permissions for accessing accounts  

6 Permissions for accessing messages  

7 Permissions for accessing location info  

8 Permissions for accessing hardware  

9 Permissions for accessing networks  

10 
Permissions for accessing personal info 

(contacts and calendar)  

11 Permissions for low-level system interaction  

12 Private (signature-only)  

 

Figure 4 shows the top 20 permissions 

requested and required by both malicious and 

benign applications. Compare the results against 

their statistics, the top three requested 

permissions are the same. For malicious 

applications, the top three requested permissions 

are INTERNET, READ CONTACTS, and 

ACCESS NETWORK STATE. For benign 

applications, the top three requested permissions 

are 

CALL_PHONE,CHANGE_WIFI_STATE,and 

READ_PHONE_STATE. Although the number 

of malicious application, the system evaluated is 

less than, the ranks of requested permissions are 

similar.  

Figure 4 show the value of malware 

applications requesting certain number of 

permission, respectively. It is shown that the best 

result in Escofpriv of malware application 

requesting certain number of Risky3 permission. 

It can be easily seen that lowest level of 

Escofpriv malware application at Risky1. 

Compare the categories of Risky2 level as the 

almost same level of Risky3 malware detection 

characterization. Trajon, InfoSt, PreSMS and 

RootEx malware characterization are the lowest 

value of permission in usage level. 
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Figure 3.  TOP MOST REQUEST PERMISSIONS FROM THE 

APPLICATIONS 

 

 

Figure 4.  Compare the accuracy result using 250 

applications 

Catagorization of Risky Permission 

Permissions have different danger levels 

depending on the functions they allow the 

application to perform and are consequently 

classified in protection level groups. Likewise, 

through this attribute, it is possible to determine 

which applications have access to the 

permission:  

Risk1: They pose a risky1 factor and typically 

only affect the application‟s scope. Risk1 

permissions are granted by the system 

automatically without explicit approval of the 

user. 

Risk2: They are risky2 permissions that allow 

costly access to services. The permissions can be 

granted by the user during installation. If the 

permission request is denied, then the application 

is not installed. 

Risk3: They are risky3 permissions are only 

granted if the requesting application is signed by 

the same developer that defined the permission. 

Risk3 permissions are useful for restricting 

component access to a small set of applications 

trusted and controlled by the developer. 

Identification of Risky Permission 

TROJAN pattern: ACCESS COARSE 

LOCATION, ACCESS FINE LOCATION, 

CALL PHONE, INTERNET, MOUNT 

UNMOUNT FILESYSTEMS, READ 

CONTACTS, READ PHONE STATE, SEND 

SMS, SET WALLPAPER, WRITE 

CONTACTS, WRITE EXTERNAL STORAGE. 

The Trojan requests a rather distinct set of 

permissions, many of which are not often 

requested by legitimate applications. Using this 

pattern on the data set resulted in no hits from 

the legitimate markets, only the malicious data 

set. 

ESCOFPRIV pattern: INTERNET, ACCESS 

NETWORK STATE, READ PHONE STATE, 

ACCESS WIFI STATE, WRITE EXTERNAL 

STORAGE, ACCESS COARSE LOCATION, 

ACCESS FINE LOCATION, RECEIVE SMS, 

SEND SMS, READ SMS, CALL PHONE, 

PROCESS OUTGOING CALLS, DELETE 

PACKAGES, INSTALL PACKAGES, 

RECEIVE BOOT COMPLETED.  

This pattern returns only the Escofpriv 

samples malware from the malicious data set. 

Like the Trojan pattern, this pattern can almost 

uniquely identify Escofpriv infected applications. 

PREMSMS pattern: SEND SMS, READ 

SMS, WRITE SMS, RECEIVE SMS, DEVICE 

POWER, WRITE APN SETTINGS, ACCESS 

NETWORK STATE, BROADCAST 
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PACKAGE REMOVED, ACCESS WIFI 

STATE, CHANGE WIFI STATE, WAKE 

LOCK, INTERNET, WRITE EXTERNAL 

STORAGE, READ PHONE STATE, KILL 

BACKGROUND PROCESSES. 

PremSMS effectively means that the malware 

can be uniquely identified based only on its 

permission set, this pattern is effective in 

determining the presence of this malware. 

INFOSTEAL pattern: READ CALENDAR, 

READ CONTACTS, READ USER 

DICTIONARY, WRITE CALENDAR, WRITE-

CONTACTS, WRITE USER DICTIONARY, 

SET ALARM, READ HISTORY 

BOOKMARKS, and WRITE HISTORY 

BOOKMARKS. 

Infosteal pattern READ CONTACT 

PERMISSION, which means that it is install 

application: Allows an application to read the 

user‟s contacts data. 

 ROOT EXPLOIT pattern: ACCESS 

NETWORK STATE, ACCESS WIFI STATE, 

BLUETOOTH, INTERNET, NFC, USE SIP, 

ACCOUNT MANAGER. 

 Using this pattern against the data set resulted 

in 981 authorize applications identified as Root 

exploit. 

TABLE IV 

IDENTIFICATION OF RISKY ASSESSMENT 

 

 

 

 

Table IV shows the requested permissions in 

the benign application and malware datasets. 

Risk level of identification grate R2: CAMERA 

is the most frequently used permission by both 

the benign applications and malware. There are 

many reasons to request permission for picture 

access: some of the applications need to log in; 

some are designed to use internet like browsers 

and email clients; some need to load 

advertisement etc. As a result, Camera-related 

permissions, such as ACCESS NETWORK 

STATE and ACCESS WIFI STATE, become 

very popular. Another set of widely used 

permissions are location related ones such as 

ACCESS FINE LOCATION and ACCESS 

COARSE LOCATION for location based 

services as defined on grate level of R1, etc. 

Another observation is that some applications 

of permissions are requested by such malware 

applications in the Cantagio dataset. Malware are 

more favor of changing the settings and use 

money-related services such as short message 

service (SMS). Changing settings, especially 

changing the network settings, generally is the 

first step before a malware performs any 

malicious activity. Sometimes malware even try 

to kill background processes, which could help 

them avoid being detected by anti-virus 

applications. Characterization system can see 

that the usage pattern of SMS related 

permissions is quite different between the benign 

applications and the malware applications and 

many malware applications attempt to request 

SMS related permissions. SMS is also a risky 

permission of private threat (Risk3) that is more 

likely requested by malware applications. 

Describe the data usage of SMS include the data 

category of communication as shown in Table V. 

 

 

 

 

 

Identification 

Grate 
Permission request 

 

R1 

 

ACCESS_COARSE_LOCATION,ACCESS_FI

NE_LOCATION,ACCESS_NETWORK_STA
TE,ACCESS_WIFI_STATE,BLUETOOTH_A

DMIN,GET_TASK,READ_CALENDAR,REA

D_HISTORY_BOOKMARKS,READ_LOGS,
READ_USER_DICTIONARY,RECEIVE_WA

P_PUSH,SUBSCRIBED_FEEDS_READ 

R2 

 
CAMERA_PROCESS_OUTGOING,CALLS,R

EAD_CALL_LOG,READ_CONTACTS,REA

D_EXTERNAL_STORAGE,READ_SMS,REA

D_SOCIAL_STREAM.RECEIVE_MMS,REC

EIVE_SMS,RECORD_AUDIO,WRITE_EXTE

RNAL_STORAGE 

R3 

 

AUTHENTICATE_ACCOUNTS,GET_ACCO

UNTS,USE_CREDENTIALS 
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TABLE V 

IDENTIFICATION OF RISKY ASSESSMENT 

Data 

Category 

  

Data 

Usage 

  

Permission 

Request 

  

Private 

Threat 
R

1 

R

2 

R

3 

Sensor/Lo

cation 

  

  

  

  

  

  

  

 
Locatio

n 

Audio 

Video 

 

ACCESS_COARSE_LO

CATION 
   

ACCESS_FINE_LOCATI

ON 
   

BLUETOOTH_ADMIN    
ACCESS_NETWORK_S

TATE 
   

ACCESS_WIFI_STATE    
READ_SOCIAL_STREA

M 
   

RECORD_AUDIO    
CAMERA    

External 

Storage 

  

 WRITE_EXTENAL_STO

RAGE 
   

READ_EXTERNAL_ST

ORAGE 
   

 

Communi

cation 

  

  

  

  

SMS 

MMS 

Voice 

Wap 

Push 

 

RECEIVE_SMS    
READ_SMS    
RECEIVE_MMS    
PROCESS_OUTGOING_

CALLS 
   

RECEIVE_WAP_PUSH    
 

IV. CONCLUSIONS 

Mobile malware performs malicious activities 

like stealing confidential information, sending 

messages, SMS, reading contacts and can even 

harm by exploiting the data. Malware is 

spreading around the world and infecting not 

only for end users, but also for large 

organizations and service providers. Malware 

classification is a vital component and works 

together with malware identification to prepare 

the right and effective malware antidote.  

In this research, malware classification and 

analysis have been used to determine whether a 

program has malicious intent or not. In this study, 

collected Android applications have been 

classified using machine learning approaches 

whether they are malware or benign. Static 

approach has been used to classify and detect 

malware. Several permission features from 

several manifest files have been extracted. A 

score-based feature selection approaches, which 

is only based on manifest file analysis have been 

proposed and evaluated as a lightweight 

approach for malware detection. And then, the 

selected malware was detected using different 

classifier. According to the experimented 

consequences, the proposed score-based feature 

selection has been performed similarly with 

existing feature selection methods. (Correlation-

based and Information Gain). Moreover, by 

using static-based malware approach, it is more 

efficient and adaptable because the static 

approach has the advantages of less cost rather 

than a dynamic approach.  

Therefore, the proposed approach using 

permissions is effective for malware detection 

which achieved an average rate of malware 

detection accuracy. Not only malware 

classification, but also malware characterization 

is also important to inform the user and install 

the malware application, because the user is not 

aware to install several applications of their 

device. The Android application requires several 

permissions to work. An essential step to install 

an Android application into a mobile device is to 

allow all permissions requested by the 

application. 

In this work, malware detection system has 

been provided a systematic study on the 

exploration of permission-induced risk in 

Android apps on a large-scale in three levels. 

First, the research has been focused on ranking 

all the individual permissions request by using 

three methods. Second, the research has been 

identified the subsets of top most permissions 

with sequential forward selection as well as with 

score-based.  And then, the evaluation of this 

system has been employed several algorithms, 

BN, MLP, J48, KNN and RF, to detect malware 

applications based on the identified subsets of 

exploit permissions. The design also constructs 

top most demand sets with feature ranking to 

detect malware applications with different 

characteristics. The large official application data 

set consisting of 1000 benign applications and 

981 malware applications, as well as a third-

party application set have been used for the 

evaluation. 
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The focus of this research is tantamount to 

design a simple and easy-to-evaluate framework 

for analyzing mobile privacy. Categorizing and 

classifying mobile applications according to their 

potential for privacy invasion provides detailed 

information about what is placed at risk by 

installing and agreeing to various permission and 

privilege requests by mobile applications. This 

categorization has been based on the permissions 

requested by an application. Malware detection 

has been discussed and analyzed in depth the 

effectiveness as well as the limitations on the 

detection of malware applications with only 

permission requests. While the permission 

requests characterized the behaviors of apps to 

certain extent and the detection can be effective, 

only considering the permissions would have 

difficulties to improve the current detection 

accuracy, as the permission vectors are very 

sparse and binary number type. The results 

obtained from a user training test using five 

selected classifiers to perform the experiments 

have been presented in Appendix A. The table 

showed the performance of each classifier in ten 

(100 and 1000 applications) experiment sets for 

malware detection. Classifier performance has 

been needed to be measured with five evaluation 

metrics, namely TPR, FPR, precision, recall and 

f-measure. 

The results of the average error rates and 

accuracy for different feature sets with and 

without category information have been 

compared. The description has been observed 

that an increasing accuracy and decreasing error 

rates when larger numbers of features are utilized 

to train the classifier. It was also clear that by 

exploiting the category information; there was a 

clear improvement in the accuracy and error 

rates. Also, note that there was almost a 

difference of 86%, 95% in the performance using 

with and without feature sets indicating the 

importance of feature ranking based on the 

frequency of permission request. 

In the experiments, the system has been used 

all the application data for permission ranking. In 

the study, Information Gain, Correlation-based 

as well as score-based methods have been used 

for ranking the permissions which contained the 

malware and benign features. The ranking results 

for the top FSI, FSII and FSIII permissions were 

presented in Appendix A and 15 permission top 

most request FSI was the lowest ranked features. 

It has been observed that Information Gain and 

Correlation-based produced the same top most 

requests set, although the ranking order for the 

first feature permissions was different. The 

number of intersections of the top request 

permissions that have been generated by 

Correlation-based and Information Gain have 

been nearly consistent with the ranking results. 

The only one difference permission of score-

based in the ranking results was set in boldface.  

According to the classification results, the 

classification of top most requests FSI using 

1000 applications has been demonstrated that the 

classifier bayes network has been produced a 

higher FPR result with 0.39% compared to the k-

nearest neighbor in 0.112%. This has been 

indicated that the bayes network was less 

effective than another selected classifier for 

malware detection. 

From the classification of top most requests 

FSII using 1000 samples in the current result, the 

J48 classifier has been achieved 87% and RF has 

been achieved 92% detection rate accuracy. 

Whereas the highest detection rate attained in 

this research was 87% with the KNN classifier. 

Therefore, the observed results indicate the 

comprehensiveness and efficiency of this study. 

V. FUTURE WORK 

The current work discusses and analyzes in 

depth the effectiveness as well as the limitations 

on the detection of malware applications with 

only permission requests. While the permission 

requests characterize the behaviors of 

applications to certain extent and the detection 

can be effective, only considering the 

permissions would have difficulties to improve 

the current detection accuracy, as the permission 
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vectors are very sparse and binary number. In the 

future work, there are exploring more relevant 

features that inherit in application in order to 

improve the detection accuracy of Android 

malware application. 
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