
65

Memory Access Scheduling for Improving performance
Yee Yee Soe

University of Computer Studies, Loikaw

yinminhansoe@gmail.com

Abstract – The bandwidth and latency of a memory

system are strongly dependent on the manner in which

accesses interact with the “3-D” structure of banks,

rows, and columns characteristic of contemporary

DRAM chips. There is nearly an order of magnitude

difference in bandwidth between successive references

to different columns within a row and different rows

within a bank. This paper introduces memory access

scheduling, a technique that improves the performance

of a memory system by reordering memory references

to exploit locality within the 3-D memory structure.

Conservative reordering, in which the first ready

reference in a sequence is performed, improves

bandwidth by 40% for traces from five media

benchmarks. Aggressive reordering, in which

operations are scheduled to optimize memory

bandwidth, improves bandwidth by 93% for the same

set of applications. Memory access scheduling is

particularly important for media processors where it

enables the processor to make the most efficient use of

scarce memory bandwidth.

Keywords—bandwidth, latency, memory access, DRAM

and performance

I. INTRODUCTION

Modern computer systems are becoming

increasingly limited by memory performance.

While processor performance increases at a rate

of 60% per year, the bandwidth of a memory

chip increases by only 10% per year making it

costly to provide the memory bandwidth

required to match the processor performance.

The memory bandwidth bottleneck is even more

acute for media processors with streaming

memory reference patterns that do not cache

well. Without an effective cache to reduce the

bandwidth demands on main memory, these

media processors are more often limited by

memory system bandwidth than other computer

systems.

To maximize memory bandwidth, modern

DRAM components allow pipelining of memory

accesses, provide several independent memory

banks, and cache the most recently accessed row

of each bank. While these features increase the

peak supplied memory bandwidth, they also

make the performance of the DRAM highly

dependent on the access pattern. Modern

DRAMs are not truly random access devices

(equal access time to all locations) but rather are

three-dimensional memory devices with

dimensions of bank, row and column. Sequential

accesses to different rows within one bank have

high latency and cannot be pipelined, while

accesses to different banks or different words

within a single row have low latency and can be

pipelined.

The three-dimensional nature of modern

memory devices makes it advantageous to

reorder memory operations to exploit the non-

uniform access times of the DRAM. This

optimization is similar to how a superscalar

processor schedules arithmetic operations out of

order. As with a superscalar processor, the

semantics of sequential execution are preserved

by reordering the results.

This paper introduces memory access

scheduling in which DRAM operations are

scheduled, possibly completing memory

references out of order, to optimize memory

system performance. The several memory access

scheduling strategies introduced in this paper

increase the sustained memory bandwidth of a

system by up to 144% over a system with no

access scheduling when applied to realistic

synthetic benchmarks. Media processing

applications exhibit a 30% improvement in

sustained memory bandwidth with memory

access scheduling, and the traces of these

66

applications offer a potential bandwidth

improvement of up to 93%.

The advantage of memory access scheduling,

consider the sequence of eight memory

operations shown in Figure 1A. Each reference is

represented by the triple (bank, row, column).

Suppose we have a memory system utilizing a

DRAM that requires 3 cycles to precharge a

bank, 3 cycles to access a row of a bank, and 1

cycle to access a column of a row. Once a row

has been accessed, a new column access can

issue each cycle until the bank is precharged. If

these eight references are performed in order,

each requires a pre- charge, a row access, and a

column access for a total of seven cycles per

reference, or 56 cycles for all eight references. If

we reschedule these operations as shown in

Figure 1B they can be performed in 19 cycles.

The following section discusses the

characteristics of modern DRAM architecture.

Section 3 introduces the concept of memory

access scheduling and the possible algorithms

that can be used to reorder DRAM operations.

Section 4 describes the streaming media

processor and benchmarks that will be used to

evaluate memory access scheduling. Section 5

presents a performance comparison of the

various memory access scheduling algorithms.

Finally, Section 6 presents related work to

memory access scheduling.

Figure 1. Time to complete a series of memory

references without (A) and with (B) access reordering.

II. Modern DRAM Architecture

The order in which DRAM accesses are

scheduled can have a dramatic impact on

memory throughput and latency. To improve

memory performance, a memory controller must

take advantage of the characteristics of modern

DRAM.

Figure 2 shows the internal organization of

modern DRAMs. These DRAMs are three-

dimensional memories with the dimensions of

bank, row, and column. Each bank operates

independently of the other banks and contains an

array of memory cells that are accessed an entire

row at a time. When a row of this memory array

is accessed (rowactivation) the entire row of the

memory array is transferred into the bank’s row

buffer. The row buffer serves as a cache to

reduce the latency of subsequent accesses to that

row. While a row is active in the row buffer, any

number of reads or writes (column accesses) may

be performed, typically with a throughput of one

per cycle. After completing the available column

accesses, the cached row must be written back to

the memory array by an explicit operation (bank

precharge) which prepares the bank for a

subsequent row activation.

This SDRAM may be operated at 125MHz,

with a precharge latency of 3 cycles (24ns) and a

row access latency of 3 cycles (24ns). Pipelined

column accesses that transfer 16 bits may issue

at the rate of one per cycle (8ns), yielding a peak

transfer rate of 250MB/s. However, it is difficult

to achieve this rate on non-sequential access

patterns for several reasons. A bank cannot be

accessed during the precharge/activate latency, a

single cycle of high impedance is required on the

data pins when switching between read and write

column accesses, and a single set of address lines

is shared by all DRAM operations (bank

precharge, row activation, and column access).

The amount of bank parallelism that is exploited

and the number of column accesses that are

made per row access dictate the sustainable

memory bandwidth out of such a DRAM.

67

A memory access scheduler must generate a

schedule that conforms to the timing and

resource constraints of these modern DRAMs.

Figure 3 illustrates these constraints for the NEC

SDRAM with a simplified bank state diagram

and a table of operation resource utilization.

Each DRAM operation makes different demands

on the three DRAM resources: the internal

banks, a single set of address lines, and a single

set of data lines. The scheduler must ensure that

the required sources are available for each

DRAM operation it schedules.

Figure 2. Modern DRAM Organization

Each DRAM bank has two stable states:

IDLE and ACTIVE, as shown in Figure 3A. In

the IDLE state, the DRAM is precharged and

ready for a row access. It will remain in this state

until a row activate operation is issued to the

bank. To issue a row activation, the address lines

must be used to select the bank and the row

being activated, as shown in Figure 3B. Row

activation requires 3 cycles, during which no

other operations may be issued to that bank, as

indicated by the utilization of the bank resource

for the duration of the operation. During that

time, however, operations may be issued to other

banks of the DRAM. Once the DRAM’s row

activation latency has passed, the bank enters the

ACTIVE state, during which the contents of the

selected row are held in the bank’s row buffer.

Any number of pipelined column accesses may

be performed while the bank is in the ACTIVE

state. To issue either a read or write column

access, the address lines are required to indicate

the bank and the column of the active row in that

bank. A write column access requires the data to

be transferred to the DRAM at the time of issue,

whereas a read column access returns the

requested data three cycles later. Additional

timing constraints not shown in Figure 3, such as

a required cycle of high impedance between

reads and writes, may further restrict the use of

the data pins.

The bank will remain in the ACTIVE state

until a precharge operation is issued to return it

to the IDLE state. The precharge operation

requires the use of the address lines to indicate

the bank which is to be precharged. Like row

activation, the precharge operation utilizes the

bank resource for 3 cycles, during which no new

operations may be issued to that bank. Again,

operations may be issued to other banks during

this time. After the DRAM’s precharge latency,

the bank is eturned to the IDLE state and is ready

for a new row activation operation. Frequently,

there are also timing constraints that govern the

minimum latency between a column access and a

subsequent precharge operation. DRAMs

typically also support column accesses with

68

automatic precharge, which implicitly precharges

the DRAM bank as soon as possible after the

column access.

(A) Simplified Bank State Diagram

(B) Operation Resource Utilization

Figure 3. Simplified state diagram and resource

utilization

governing access to an internal DRAM bank.

III. Memory Access Scheduling

Memory access scheduling is the process of

ordering the DRAM operations (bank precharge,

row activation, and column access) necessary to

complete the set of currently pending memory

references. Throughout the paper, the term

operation denotes a command, such as a row

activation or a column access, issued by the

memory controller to the DRAM. Similarly, the

term reference denotes a memory reference

generated by the processor, such as a load or

store to a memory location. A single reference

generates one or more memory operations

depending on the schedule.

Given a set of pending memory references, a

memory access scheduler may chose one or more

row, column, or precharge operations each cycle,

subject to resource constraints, to advance one or

more of the pending references. The simplest,

and most common, scheduling algorithm only

considers the oldest pending reference, so that

references are satisfied in the order that they

arrive. If it is currently possible to make progress

on that reference by performing some DRAM

operation then the memory controller makes the

appropriate access. While this does not require a

complicated access scheduler in the memory

controller, it is clearly inefficient, as illustrated in

Figure 1 of the Introduction.

If the DRAM is not ready for the operation

required by the oldest pending reference, or if

that operation would leave available resources

idle, it makes sense to consider operations for

other pending references. Figure 4 shows the

structure of a more sophisticated access

scheduler. As memory references arrive, they are

allocated storage space while they await service

from the memory access scheduler. In the figure,

references are initially sorted by DRAM bank.

Each pending reference is represented by six

fields: valid (V), load/store (L/S), address (Row

and Col), data, and whatever additional state is

necessary for the scheduling algorithm.

Examples of state that can be accessed and

modified by the scheduler are the age of the

reference and whether or not that reference

targets the currently active row. In practice, the

pending reference storage could be shared by all

the banks (with the addition of a bank address

field) to allow dynamic allocation of that storage

at the cost of increased logic complexity in the

scheduler.

Figure 4. Memory Access Scheduler

Architecture

69

As shown in Figure 4, each bank has a

precharge manager and a row arbiter. The

precharge manager simply decides when its

associated bank should be precharged. Similarly,

the row arbiter for each bank decides which row,

if any, should be activated when that bank is idle.

A single column arbiter is shared by all the

banks. The column arbiter grants the shared data

line resources to a single column access out of all

the pending references to all of the banks.

Finally, the precharge managers, row arbiters,

and column arbiter send

their selected operations to a single address

arbiter which grants the shared address resources

to one or more of those operations.

The precharge managers, row arbiters, and

column arbiter can use several different policies

to select DRAM operations, as enumerated in

Table 1. The combination of policies used by

these units, along with the address arbiter’s

policy, determines the memory access

scheduling algorithm. The address arbiter must

decide which of the selected precharge, activate,

and column operations to perform subject to the

constraints of the address line resources. As with

all of the other scheduling decisions, the in-order

or priority policies can be used by the address

arbiter to make this selection. Additional policies

that can be used are those that select precharge

operations first, row operations first, or column

operations first. A column-first scheduling policy

would reduce the latency of references to active

rows, whereas a precharge-first or row-first

scheduling policy would increase the amount of

bank parallelism.

If the address resources are not shared, it is

possible for both a precharge operation and a

column access to the same bank to be selected.

This is likely to violate the timing constraints of

the DRAM. Ideally, this conflict can be handled

by having the column access automatically

precharge the bank upon completion, which is

supported by most modern RAMs.

Table 1. Scheduling policies for the precharge

managers, row arbiters, and column arbiter.

IV. Experimental Setup

Streaming media data types do not cache well,

so they require other types of support to improve

memory performance. In a stream (or vector)

processor, the stream transfer bandwidth, rather

than the latency of any individual memory

reference, drives processor performance. A

streaming media processing system, therefore, is

a prime candidate for memory access scheduling.

To evaluate the performance impact of memory

access scheduling on media processing, a

streaming media processor was simulated

running typical media processing applications.

A. Stream Processor Architecture

Media processing systems typically do not

cache streaming media data types, because

modern cache hierarchies cannot handle them

efficiently [9]. In a media computation on long

streams of data, the same operations are

performed repeatedly on consecutive stream

elements, and the stream elements are discarded

after the operations are performed. These streams

do not cache well because they lack temporal

70

locality (stream elements are usually only

referenced once) and they have a large cache

footprint, which makes it likely that they will

interfere with other data in the cache. In many

media processing systems, stream accesses

bypass the cache so as not to interfere with other

data that does cache well. Many streams are

accessed sequentially, so prefetching streams

into the cache can sometimes be effective at

improving processor performance [14].

However, this is an inefficient way to provide

storage for streaming data because address

translation is required on every reference,

accesses are made with long addresses, tag

overhead is incurred in the cache, and conflicts

may evict previously fetched data.

The Imagine stream processor [15] employs a

64KB stream register file (SRF), rather than a

cache, to capture the reference locality of

streams. Entire streams are transferred between

the DRAMs and the SRF. This is more efficient

than a cache because a single instruction, rather

than many explicit instructions, can be used to

transfer a stream of data to or from memory.

Stream memory transfers (similar to vector

memory transfers) are independent operations

that are isolated from computation. Therefore,

the memory system can be loading streams for

the next set of computations and storing streams

for the previous set of computations while the

current set of computations are occurring. A

computation cannot commence

until all of the streams it requires are present

in the stream register file. The Imagine streaming

memory system consists of a pair of address

generators, four interleaved memory bank

controllers, and a pair of reorder buffers that

these units are on the same chip as the Imagine

processor core. The address generators support

three addressing modes: constant stride, indirect,

and bit-reversed. The address generators may

generate memory reference streams of any

length, as long as the data fits in the SRF. For

constant stride references, the address generator

takes a base, stride, and length, and computes

successive addresses by incrementing the base

address by the stride. For indirect references, the

address generator takes a base address and an

index stream from the SRF and calculates

addresses by adding each index to the base

address. Bit-reversed addressing is used for FFT

memory references and is similar to constant

stride addressing, except that bit-reversed

addition is used to calculate addresses. place

stream data in the SRF in the correct order. All

of these units are on the same chip as the

Imagine processor core. The address generators

support three addressing modes: constant stride,

indirect, and bit-reversed.

The address generators may generate memory

reference streams of any length, as long as the

data fits in the SRF. For constant stride

references, the address generator takes a base,

stride, and length, and computes successive

addresses by incrementing the base address by

the stride. For indirect references, the address

generator takes a base address and an index

stream from the SRF and calculates addresses by

adding each index to the base address. Bit-

reversed addressing is used for FFT memory

references and is similar to constant stride

addressing, except that bit-reversed addition is

used to calculate addresses.

Figure 5. Memory bank controller architecture.

Figure 5 shows the architecture of the

memory bank controllers. References arriving

from the address generators are stored in a small

71

holding buffer until they can be processed.

Despite the fact that there is no cache, a set of

registers similar in function to the miss status

holding registers (MSHRs) of a non-blocking

cache [8] exist to keep track of in-flight

references and to do read and write coalescing.

When a reference arrives for a location that is

already the target of another in-flight reference,

the MSHR entry for that reference is updated to

reflect that this reference will be satisfied by the

same DRAM access. When a reference to a

location that is not already the target of another

in-flight reference arrives, a new MSHR is

allocated and the reference is sent to the bank

buffer. The bank buffer corresponds directly to

the pending reference storage in Figure 4,

although the storage for all of the internal

DRAM banks is combined into one 32 entry

buffer. The memory controller schedules DRAM

accesses to satisfy the pending references in the

bank buffer and returns completed accesses to

the MSHRs. The MSHRs send completed loads

to the reply buffer where they are held until they

can be sent back to the reorder buffers. As the

name implies, the reorder buffers receive out of

order references and transfer the data to the SRF

in order.

In this streaming memory system, memory

consistency is maintained in two ways:

conflicting memory stream references are issued

in dependency order and the MSHRs ensure that

references to the same address complete in the

order that they arrive. This means that a stream

load that follows a stream store to overlapping

locations may be issued

as soon as the address generators have sent all

of the store’s references to the memory banks.

For the simulations, it was assumed that the

processor frequency was 500 MHz and that the

DRAM frequency was 125 MHz.3 At this

frequency, Imagine has a peak computation rate

of 20GFLOPS on single precision floating point

computations and 20GOPS on 32-bit integer

computations. Each memory bank controller has

two external NEC mPD45128163 SDRAM chips

attached to it to provide a

column access width of 32 bits, which is the

word size of the Imagine processor. These

SDRAM chips were briefly described earlier and

a complete specification can be found in [13].

The peak bandwidth of the SDRAMs connected

to each memory bank controller is 500MB/s,

yielding a total peak memory bandwidth of

2GB/s in the system.

B. Benchmarks

The experiments were run on a set of

microbenchmarks and five media processing

applications. Table 2 describes the

microbenchmarks above the double line, and the

applications below the double line.

Table2.Benchmarks.

For the microbenchmarks, no computations

are performed outside of the address generators.

This allows memory references to be issued at

their maximum throughput, constrained only by

the buffer storage in the memory banks. For the

applications, the simulations were run both with

the applications’ computations and without.

When running just the memory traces,

72

dependencies were maintained by assuming the

computation occurred at the appropriate times

but was instantaneous. The applications results

show the performance improvements that can be

gained by using memory access scheduling with

a modern media processor. The application

traces, with instantaneous computation, show the

potential of these scheduling methods as

processing power increases and the applications

become entirely limited by memory bandwidth.

V. Experimental Results

A memory controller that performs no access

reordering will serve as a basis for comparison.

This controller performs no access scheduling, as

it uses an in-order policy, described in Table 1,

for all decisions: a column access will only be

performed for the oldest pending reference, a

bank will only be precharged if necessary for the

oldest pending reference, and a row will only be

activated if it is needed by the oldest pending

reference. No other references are considered in

the scheduling decision. This algorithm, or slight

variations such as automatically precharging the

bank when a cache line fetch is completed, can

commonly be found in systems today.

The gray bars of Figure 6 show the

performance of the benchmarks using the

baseline in-order access scheduler.

Unsurprisingly, unit load performs very well

with no access scheduling, achieving 97% of the

peak bandwidth (2GB/s) of the DRAMs. The 3%

overhead is the combined result of infrequent

precharge/activate cycles and the start-

up/shutdown delays of the streaming memory

system.

The 14% drop in sustained bandwidth from

the unit load benchmark to the unit benchmark

shows the performance degradation imposed by

forcing intermixed load and store references to

complete in order. Each time the references

switch between loads and stores a cycle of high

impedance must be left on the data pins,

decreasing the sustainable bandwidth. The unit

conflict benchmark further shows the penalty of

swapping back and forth between rows in the

DRAM banks, which drops the sustainable

bandwidth down to 51% of the peak. The

random benchmarks sustain about 15% of the

bandwidth of the unit load benchmark.

The QRD and MPEG traces include many

unit and small constant stride accesses, leading

to a sustained andwidth that approaches that of

the unit benchmark. The Depth trace consists

almost exclusively of constant stride accesses,

but dependencies limit the number of

simultaneous stream accesses that can occur. The

FFT trace is composed of constant stride loads

and bit-reversed stores. The bit-reversed accesses

sustain less bandwidth than constant stride

accesses because they generate sequences of

references that target a single memory bank and

then a sequence of references that target the next

memory bank and so on. This results in lower

bandwidth than access patterns that more evenly

distribute the references across the four memory

banks. Finally, the Tex trace includes constant

stride accesses, but is dominated by texture

accesses which are essentially random within the

texture memory space. These texture accesses

lead to the lowest sustained bandwidth of the

applications.

1. First-ready Scheduling

The use of a very simple first-ready access

scheduler improves performance by an average

of over 25% on all of the benchmarks. First-

ready scheduling uses the ordered priority

scheme, as described in Table 1, to make all

scheduling decisions. The first-ready scheduler

considers all pending references and schedules a

DRAM operation for the oldest pending

reference that does not violate the timing and

resource constraints of the DRAM. The most

obvious benefit of this scheduling algorithm over

73

the baseline is that accesses targeting other banks

can be made while waiting for a precharge or

activate operation to complete for the oldest

pending reference. This relaxes the serialization

of the in-order scheduler and allows multiple

references to progress in parallel.

Figure 6. Sustained memory bandwidth using in-order and first-

ready access schedulers (2 GB/s peak supplied bandwidth).

Figure 6 shows the sustained bandwidth of the

in-order and first-ready scheduling algorithms

for each benchmark. The sustained bandwidth is

increased by 79% for the microbenchmarks, 17%

for the applications, and 40% for the application

traces. As should be expected, unit load shows

little improvement as it already sustains almost

all of the peak SDRAM bandwidth, and the

random benchmarks show an improvement of

over 125%, as they are able to increase the

number of column accesses per row activation

significantly.

Figure 7. Sustained memory bandwidth of memory access scheduling

algorithms (2 GB/s peak supplied bandwidth).

2. Aggressive Reordering

When the oldest pending reference targets a

different row than the active row in a particular

bank, the first-ready scheduler will precharge

that bank even if it still has pending references to

its active row. More aggressive scheduling

algorithms are required to further improve

performance. In this section, four scheduling

algorithms, enumerated in Table 3, that attempt

to further increase sustained memory bandwidth

are investigated. The policies for each of the

schedulers in Table 3 are described in Table 1.

The range of possible memory access schedulers

is quite large, and covering all of the schedulers

examined in Section 3 would be prohibitive.

These four schedulers were chosen to be

representative of many of the important

characteristics of an aggressive memory access

scheduler.

Table 3. Reordering scheduling algorithm policies.

Figure 7 presents the sustained memory

bandwidth for each memory access scheduling

algorithm on the given benchmarks. These

aggressive scheduling algorithms improve the

memory bandwidth of the microbenchmarks by

106-144%, the applications by 27-30%, and the

application traces by 85-93% over in-order

scheduling.

VI. Related Work

Stream buffers prefetch data structured as

streams or vectors to hide memory access latency

[7]. Stream buffers do not reorder the access

stream to take advantage of the 3-D nature of

DRAM. For streams with small, fixed strides,

references from one stream tend to make several

column accesses for each row activation, giving

good performance on a modern DRAM.

However, conflicts with other streams and non-

stream accesses often evict the active row,

thereby reducing performance. McKee’s Stream

Memory Controller (SMC) extends a simple

stream buffer to reduce memory conflicts among

streams by issuing several references from one

stream before switching streams [6] [11]. The

SMC does not reorder references within a single

stream.

The Command Vector Memory System

(CVMS) [2] reduces the processor to memory

address bandwidth by transferring commands to

the memory controllers, rather than individual

74

references. A command includes a base and a

stride which is expanded into the appropriate

sequence of references by each off-chip memory

bank controller. The bank controllers in the

CVMS utilize a row/closed scheduling policy

among commands to improve the bandwidth and

latency of the SDRAM. The Parallel Vector

Access unit (PVA) [10] augments the Impulse

memory system [1] with a similar mechanism for

transferring commands to the Impulse memory

controller. Neither of these systems reorder

references within a single stream. Conserving

address bandwidth, as in the CVMS and PVA, is

important for systems with off-chip memory

controllers, but is largely orthogonal to memory

access scheduling.

The SMC, CVMS, and PVA do not handle

indirect (scatter/gather) streams. These

references are usually handled by the processor

cache, as they are not easily described to a

stream prefetching unit. However, indirect

stream references do not cache well because they

are large and lack both spatial and temporal

locality. These references also do not typically

make consecutive column accesses to the same

row, severely limiting the sustainable data

bandwidth when those references are satisfied in

order. The memory access scheduling techniques

described here work for indirect streams as well

as for strided streams, as demonstrated by the

improvements in the random benchmarks and the

Tex application.

VII. Conclusions

Memory bandwidth is becoming the limiting

factor in achieving higher performance,

especially in media processing systems.

Processor performance improvements will

continue to outpace increases in memory

bandwidth, so techniques are needed to

maximize the sustained memory bandwidth. To

maximize the peak supplied data bandwidth,

modern DRAM components allow pipelined

accesses to a three-dimensional memory

structure. Memory access scheduling greatly

increases the bandwidth utilization of these

DRAMs by buffering memory references and

choosing to complete them in an order that both

accesses the internal banks in parallel and

maximizes the number of column accesses per

row access, resulting in improved system

performance.

Memory access scheduling realizes significant

bandwidth gains on a set of media processing

applications as well as on synthetic benchmarks

and application address traces. A simple

reordering algorithm that advances the first ready

memory reference gives a 17% performance

improvement on applications, a 79% bandwidth

improvement for the microbenchmarks, and a

40% bandwidth improvement on the application

traces. The application trace results give an

indication of the performance improvement

expected in the future as processors become

more limited by memory bandwidth. More

aggressive reordering, in which references are

scheduled to increase locality and concurrency,

yields substantially larger gains. Bandwidth for

synthetic benchmarks improved by 144%,

performance of the media processing

applications improved by 30%, and the

bandwidth of the application traces increased by

93%.

A comparison of alternative scheduling

algorithms shows that on most benchmarks it is

advantageous to employ a closed page

scheduling policy in which banks are precharged

as soon as the last column reference to an active

row is completed. This is in part due to the

ability of the DRAM to combine the bank

precharge request with the final column access.

There is little difference in performance between

scheduling algorithms that give preference to

row accesses over column accesses, except that

the col/closed algorithm can sometimes close

pages too soon, somewhat degrading

performance. Finally, scheduling loads ahead of

stores improves application performance for

latency sensitive applications.Contemporary

cache organizations waste memory bandwidth in

75

order to reduce the memory latency seen by the

processor. As memory bandwidth becomes more

precious, this will no longer be a practical

solution to reducing memory latency. Media

processing has already encountered this

phenomenon, because streaming media data

types do not cache well and require careful

bandwidth management. As cache organizations

evolve to be more conscious of memory

bandwidth, techniques like memory access

scheduling will be required to sustain a

significant fraction of the available data

bandwidth. Memory access scheduling is,

therefore, an important step toward maximizing

the utilization of the increasingly scarce memory

bandwidth resources.

References

[1] CARTER, JOHN, ET AL., Impulse: Building a

Smarter Memory Controller. In Proceedings of the

Fifth International Symposium on High Performance

Computer Architecture (January 1999), pp. 70-79.

[2] CORBAL, JESUS, AND VALERO, MATEO,
Command Vector Memory Systems: High

Performance at Low Cost. In Proceedings of the 1998

International Conference on Parallel Architectures

and Compilation Techniques (October 1998), pp. 68-

77.

[3] CRISP, RICHARD, Direct Rambus Technology: The

New Main Memory Standard. IEEE Micro

(November/December 1997), pp. 18-28.

[4] CUPPU, VINODH, ET AL., A Performance

Comparison of Contemporary DRAM Architectures.

In Proceedings of the International Symposium on

Computer Architecture (May 1999), pp. 222-233.

[5] EMER, JOEL S. AND CLARK, DOUGLAS W., A

Characterization of

Processor Performance in the VAX-11/780. In

Proceedings of the International Symposium on

Computer Architecture (June 1984), pp. 301-310.

[6] HONG, SUNG I., ET AL., Access Order and Effective

Bandwidth for Streams on a Direct Rambus Memory.

In Proceedings of the Fifth International Symposium on

High Performance Computer Architecture (January

1999), pp. 80-89.

[7] JOUPPI, NORMAN P., Improving Direct-Mapped

Cache Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers. In

Proceedings of the International Symposium on

Computer Architecture (May 1990),pp. 364-373.

[8] KROFT, DAVID, Lockup-Free Instruction

Fetch/Prefetch Cache Organization. In Proceedings of

the International Symposiumon Computer

Architecture (May 1981), pp. 81-87.

[9] LEE, RUBY B. AND SMITH, MICHAEL D., Media

Processing: A new design target. IEEE Micro (August

1996), pp. 6-9.

[10] MATTHEW, BINU K., ET AL., Design of a Parallel

Vector Access Unit for SDRAM Memory Systems. In

Proceedings of the Sixth International Symposium on

High-Performance ComputerArchitecture (January

2000), pp. 39-48.

[11] MCKEE, SALLY A. AND WULF, WILLIAM A.,

Access Ordering and

Memory-Conscious Cache Utilization. In Proceedings

of the First Symposium on High Performance

Computer Architecture (January 1995), pp. 253-262.

[12] NEC Corporation. 128M-bit Synchronous DRAM 4-

bank,LVTTL Data Sheet. Document No.

M12650EJ5V0DS00, 5
th

 Edition, Revision K (July

[13] PATTERSON, DAVID, ET AL., A Case for

Intelligent RAM. IEEE

Micro (March/April 1997), pp. 34-44.1998).

[14] RANGANATHAN, PARTHASARATHY, ET AL.,

Performance of Image and Video Processing with

General-Purpose Processors and Media ISA

Extensions. In Proceedings of the International

Symposium on Computer Architecture (May 1999),

pp. 124-135.

[15] RIXNER, SCOTT, ET AL., A Bandwidth-Efficient

Architecture for Media Processing. In Proceedings of

the International Symposium on Microarchitecture

(December 1998), pp. 3-13.

[16] SAULSBURY, ASHLEY, PONG, FONG, AND

NOWATZYK, ANDREAS, Missing the Memory

Wall: The Case for Processor/Memory Integration. In

Proceedings of the International Symposium on

Computer Architecture (May 1996), pp. 90-101.

