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Abstract – The bandwidth and latency of a memory 

system are strongly dependent on the manner in which 

accesses interact with the “3-D” structure of banks, 

rows, and columns characteristic of contemporary 

DRAM chips. There is nearly an order of magnitude 

difference in bandwidth between successive references 

to different columns within a row and different rows 

within a bank. This paper introduces memory access 

scheduling, a technique that improves the performance 

of a memory system by reordering memory references 

to exploit locality within the 3-D memory structure. 

Conservative reordering, in which the first ready 

reference in a sequence is performed, improves 

bandwidth by 40% for traces from five media 

benchmarks. Aggressive reordering, in which 

operations are scheduled to optimize memory 

bandwidth, improves bandwidth by 93% for the same 

set of applications. Memory access scheduling is 

particularly important for media processors where it 

enables the processor to make the most efficient use of 

scarce memory bandwidth. 

Keywords—bandwidth, latency, memory access, DRAM 

and performance 

 

I. INTRODUCTION 

Modern computer systems are becoming 

increasingly limited by memory performance. 

While processor performance increases at a rate 

of 60% per year, the bandwidth of a memory 

chip increases by only 10% per year making it 

costly to provide the memory bandwidth 

required to match the processor performance. 

The memory bandwidth bottleneck is even more 

acute for media processors with streaming 

memory reference patterns that do not cache 

well. Without an effective cache to reduce the 

bandwidth demands on main memory, these 

media processors are more often limited by 

memory system bandwidth than other computer 

systems. 

To maximize memory bandwidth, modern 

DRAM components allow pipelining of memory 

accesses, provide several independent memory 

banks, and cache the most recently accessed row 

of each bank. While these features increase the 

peak supplied memory bandwidth, they also 

make the performance of the DRAM highly 

dependent on the access pattern. Modern 

DRAMs are not truly random access devices 

(equal access time to all locations) but rather are 

three-dimensional memory devices with 

dimensions of bank, row and column. Sequential 

accesses to different rows within one bank have 

high latency and cannot be pipelined, while 

accesses to different banks or different words 

within a single row have low latency and can be 

pipelined. 

The three-dimensional nature of modern 

memory devices makes it advantageous to 

reorder memory operations to exploit the non-

uniform access times of the DRAM. This 

optimization is similar to how a superscalar 

processor schedules arithmetic operations out of 

order. As with a superscalar processor, the 

semantics of sequential execution are preserved 

by reordering the results. 

This paper introduces memory access 

scheduling in which DRAM operations are 

scheduled, possibly completing memory 

references out of order, to optimize memory 

system performance. The several memory access 

scheduling strategies introduced in this paper 

increase the sustained memory bandwidth of a 

system by up to 144% over a system with no 

access scheduling when applied to realistic 

synthetic benchmarks. Media processing 

applications exhibit a 30% improvement in 

sustained memory bandwidth with memory 

access scheduling, and the traces of these 
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applications offer a potential bandwidth 

improvement of up to 93%. 

The advantage of memory access scheduling, 

consider the sequence of eight memory 

operations shown in Figure 1A. Each reference is 

represented by the triple (bank, row, column). 

Suppose we have a memory system utilizing a 

DRAM that requires 3 cycles to precharge a 

bank, 3 cycles to access a row of a bank, and 1 

cycle to access a column of a row. Once a row 

has been accessed, a new column access can 

issue each cycle until the bank is precharged. If 

these eight references are performed in order, 

each requires a pre- charge, a row access, and a 

column access for a total of seven cycles per 

reference, or 56 cycles for all eight references. If 

we reschedule these operations as shown in 

Figure 1B they can be performed in 19 cycles. 

The following section discusses the 

characteristics of modern DRAM architecture. 

Section 3 introduces the concept of memory 

access scheduling and the possible algorithms 

that can be used to reorder DRAM operations. 

Section 4 describes the streaming media 

processor and benchmarks that will be used to 

evaluate memory access scheduling. Section 5 

presents a performance comparison of the 

various memory access scheduling algorithms. 

Finally, Section 6 presents related work to 

memory access scheduling. 

 

Figure 1. Time to complete a series of memory 

references without (A) and with (B) access reordering. 

 

II. Modern DRAM Architecture 

The order in which DRAM accesses are 

scheduled can have a dramatic impact on 

memory throughput and latency. To improve 

memory performance, a memory controller must 

take advantage of the characteristics of modern 

DRAM.  

Figure 2 shows the internal organization of 

modern DRAMs. These DRAMs are three-

dimensional memories with the dimensions of 

bank, row, and column. Each bank operates 

independently of the other banks and contains an 

array of memory cells that are accessed an entire 

row at a time. When a row of this memory array 

is accessed (rowactivation) the entire row of the 

memory array is transferred into the bank’s row 

buffer. The row buffer serves as a cache to 

reduce the latency of subsequent accesses to that 

row. While a row is active in the row buffer, any 

number of reads or writes (column accesses) may 

be performed, typically with a throughput of one 

per cycle. After completing the available column 

accesses, the cached row must be written back to 

the memory array by an explicit operation (bank 

precharge) which prepares the bank for a 

subsequent row activation.  

This SDRAM may be operated at 125MHz, 

with a precharge latency of 3 cycles (24ns) and a 

row access latency of 3 cycles (24ns). Pipelined 

column accesses that transfer 16 bits may issue 

at the rate of one per cycle (8ns), yielding a peak 

transfer rate of 250MB/s. However, it is difficult 

to achieve this rate on non-sequential access 

patterns for several reasons. A bank cannot be 

accessed during the precharge/activate latency, a 

single cycle of high impedance is required on the 

data pins when switching between read and write 

column accesses, and a single set of address lines 

is shared by all DRAM operations (bank 

precharge, row activation, and column access). 

The amount of bank parallelism that is exploited 

and the number of column accesses that are 

made per row access dictate the sustainable 

memory bandwidth out of such a DRAM. 
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A memory access scheduler must generate a 

schedule that conforms to the timing and 

resource constraints of these modern DRAMs. 

Figure 3 illustrates these constraints for the NEC 

SDRAM with a simplified bank state diagram 

and a table of operation resource utilization. 

Each DRAM operation makes different demands 

on the three DRAM resources: the internal 

banks, a single set of address lines, and a single 

set of data lines. The scheduler must ensure that 

the required sources are available for each 

DRAM operation it schedules. 

 

 
 

Figure 2. Modern DRAM Organization 

 

Each DRAM bank has two stable states: 

IDLE and ACTIVE, as shown in Figure 3A. In 

the IDLE state, the DRAM is precharged and 

ready for a row access. It will remain in this state 

until a row activate operation is issued to the 

bank. To issue a row activation, the address lines 

must be used to select the bank and the row 

being activated, as shown in Figure 3B. Row 

activation requires 3 cycles, during which no 

other operations may be issued to that bank, as 

indicated by the utilization of the bank resource 

for the duration of the operation. During that 

time, however, operations may be issued to other 

banks of the DRAM. Once the DRAM’s row 

activation latency has passed, the bank enters the 

ACTIVE state, during which the contents of the 

selected row are held in the bank’s row buffer. 

Any number of pipelined column accesses may 

be performed while the bank is in the ACTIVE 

state. To issue either a read or write column 

access, the address lines are required to indicate 

the bank and the column of the active row in that 

bank. A write column access requires the data to 

be transferred to the DRAM at the time of issue, 

whereas a read column access returns the 

requested data three cycles later. Additional 

timing constraints not shown in Figure 3, such as 

a required cycle of high impedance between 

reads and writes, may further restrict the use of 

the data pins. 

The bank will remain in the ACTIVE state 

until a precharge operation is issued to return it 

to the IDLE state. The precharge operation 

requires the use of the address lines to indicate 

the bank which is to be precharged. Like row 

activation, the precharge operation utilizes the 

bank resource for 3 cycles, during which no new 

operations may be issued to that bank. Again, 

operations may be issued to other banks during 

this time. After the DRAM’s precharge latency, 

the bank is eturned to the IDLE state and is ready 

for a new row activation operation. Frequently, 

there are also timing constraints that govern the 

minimum latency between a column access and a 

subsequent precharge operation. DRAMs 

typically also support column accesses with 
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automatic precharge, which implicitly precharges 

the DRAM bank as soon as possible after the 

column access. 

(A) Simplified Bank State Diagram 

 

 
 

(B) Operation Resource Utilization 

 

 
 

Figure 3. Simplified state diagram and resource 

utilization 

governing access to an internal DRAM bank. 

 

 

III. Memory Access Scheduling 

Memory access scheduling is the process of 

ordering the DRAM operations (bank precharge, 

row activation, and column access) necessary to 

complete the set of currently pending memory 

references. Throughout the paper, the term 

operation denotes a command, such as a row 

activation or a column access, issued by the 

memory controller to the DRAM. Similarly, the 

term reference denotes a memory reference 

generated by the processor, such as a load or 

store to a memory location. A single reference 

generates one or more memory operations 

depending on the schedule.  

Given a set of pending memory references, a 

memory access scheduler may chose one or more 

row, column, or precharge operations each cycle, 

subject to resource constraints, to advance one or 

more of the pending references. The simplest, 

and most common, scheduling algorithm only 

considers the oldest pending reference, so that 

references are satisfied in the order that they 

arrive. If it is currently possible to make progress 

on that reference by performing some DRAM 

operation then the memory controller makes the 

appropriate access. While this does not require a 

complicated access scheduler in the memory 

controller, it is clearly inefficient, as illustrated in 

Figure 1 of the Introduction. 

If the DRAM is not ready for the operation 

required by the oldest pending reference, or if 

that operation would leave available resources 

idle, it makes sense to consider operations for 

other pending references. Figure 4 shows the 

structure of a more sophisticated access 

scheduler. As memory references arrive, they are 

allocated storage space while they await service 

from the memory access scheduler. In the figure, 

references are initially sorted by DRAM bank. 

Each pending reference is represented by six 

fields: valid (V), load/store (L/S), address (Row 

and Col), data, and whatever additional state is 

necessary for the scheduling algorithm. 

Examples of state that can be accessed and 

modified by the scheduler are the age of the 

reference and whether or not that reference 

targets the currently active row. In practice, the 

pending reference storage could be shared by all 

the banks (with the addition of a bank address 

field) to allow dynamic allocation of that storage 

at the cost of increased logic complexity in the 

scheduler. 

 
  

Figure 4. Memory Access Scheduler 

Architecture 
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As shown in Figure 4, each bank has a 

precharge manager and a row arbiter. The 

precharge manager simply decides when its 

associated bank should be precharged. Similarly, 

the row arbiter for each bank decides which row, 

if any, should be activated when that bank is idle. 

A single column arbiter is shared by all the 

banks. The column arbiter grants the shared data 

line resources to a single column access out of all 

the pending references to all of the banks. 

Finally, the precharge managers, row arbiters, 

and column arbiter send 

their selected operations to a single address 

arbiter which grants the shared address resources 

to one or more of those operations.  

The precharge managers, row arbiters, and 

column arbiter can use several different policies 

to select DRAM operations, as enumerated in 

Table 1. The combination of policies used by 

these units, along with the address arbiter’s 

policy, determines the memory access 

scheduling algorithm. The address arbiter must 

decide which of the selected precharge, activate, 

and column operations to perform subject to the 

constraints of the address line resources. As with 

all of the other scheduling decisions, the in-order 

or priority policies can be used by the address 

arbiter to make this selection. Additional policies 

that can be used are those that select precharge 

operations first, row operations first, or column 

operations first. A column-first scheduling policy 

would reduce the latency of references to active 

rows, whereas a precharge-first or row-first 

scheduling policy would increase the amount of 

bank parallelism. 

If the address resources are not shared, it is 

possible for both a precharge operation and a 

column access to the same bank to be selected. 

This is likely to violate the timing constraints of 

the DRAM. Ideally, this conflict can be handled 

by having the column access automatically 

precharge the bank upon completion, which is 

supported by most modern RAMs. 

 

Table 1. Scheduling policies for the precharge 

managers, row arbiters, and column arbiter. 

 

 
 

IV. Experimental Setup 

 

Streaming media data types do not cache well, 

so they require other types of support to improve 

memory performance. In a stream (or vector) 

processor, the stream transfer bandwidth, rather 

than the latency of any individual memory 

reference, drives processor performance. A 

streaming media processing system, therefore, is 

a prime candidate for memory access scheduling. 

To evaluate the performance impact of memory 

access scheduling on media processing, a 

streaming media processor was simulated 

running typical media processing applications.  

 

A. Stream Processor Architecture 

Media processing systems typically do not 

cache streaming media data types, because 

modern cache hierarchies cannot handle them 

efficiently [9]. In a media computation on long 

streams of data, the same operations are 

performed repeatedly on consecutive stream 

elements, and the stream elements are discarded 

after the operations are performed. These streams 

do not cache well because they lack temporal 
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locality (stream elements are usually only 

referenced once) and they have a large cache 

footprint, which makes it likely that they will 

interfere with other data in the cache. In many 

media processing systems, stream accesses 

bypass the cache so as not to interfere with other 

data that does cache well. Many streams are 

accessed sequentially, so prefetching streams 

into the cache can sometimes be effective at 

improving processor performance [14]. 

However, this is an inefficient way to provide 

storage for streaming data because address 

translation is required on every reference, 

accesses are made with long addresses, tag 

overhead is incurred in the cache, and conflicts 

may evict previously fetched data.  

The Imagine stream processor [15] employs a 

64KB stream register file (SRF), rather than a 

cache, to capture the reference locality of 

streams. Entire streams are transferred between 

the DRAMs and the SRF. This is more efficient 

than a cache because a single instruction, rather 

than many explicit instructions, can be used to 

transfer a stream of data to or from memory. 

Stream memory transfers (similar to vector 

memory transfers) are independent operations 

that are isolated from computation. Therefore, 

the memory system can be loading streams for 

the next set of computations and storing streams 

for the previous set of computations while the 

current set of computations are occurring. A 

computation cannot commence 

until all of the streams it requires are present 

in the stream register file. The Imagine streaming 

memory system consists of a pair of address 

generators, four interleaved memory bank 

controllers, and a pair of reorder buffers that 

these units are on the same chip as the Imagine 

processor core. The address generators support 

three addressing modes: constant stride, indirect, 

and bit-reversed. The address generators may 

generate memory reference streams of any 

length, as long as the data fits in the SRF. For 

constant stride references, the address generator 

takes a base, stride, and length, and computes 

successive addresses by incrementing the base 

address by the stride. For indirect references, the 

address generator takes a base address and an 

index stream from the SRF and calculates 

addresses by adding each index to the base 

address. Bit-reversed addressing is used for FFT 

memory references and is similar to constant 

stride addressing, except that bit-reversed 

addition is used to calculate addresses. place 

stream data in the SRF in the correct order. All 

of  these units are on the same chip as the 

Imagine processor core. The address generators 

support three addressing modes: constant stride, 

indirect, and bit-reversed.  

The address generators may generate memory 

reference streams of any length, as long as the 

data fits in the SRF. For constant stride 

references, the address generator takes a base, 

stride, and length, and computes successive 

addresses by incrementing the base address by 

the stride. For indirect references, the address 

generator takes a base address and an index 

stream from the SRF and calculates addresses by 

adding each index to the base address. Bit-

reversed addressing is used for FFT memory 

references and is similar to constant stride 

addressing, except that bit-reversed addition is 

used to calculate addresses. 

 
Figure 5. Memory bank controller architecture. 

 

Figure 5 shows the architecture of the 

memory bank controllers. References arriving 

from the address generators are stored in a small 
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holding buffer until they can be processed. 

Despite the fact that there is no cache, a set of 

registers similar in function to the miss status 

holding registers (MSHRs) of a non-blocking 

cache [8] exist to keep track of in-flight 

references and to do read and write coalescing. 

When a reference arrives for a location that is 

already the target of another in-flight reference, 

the MSHR entry for that reference is updated to 

reflect that this reference will be satisfied by the 

same DRAM access. When a reference to a 

location that is not already the target of another 

in-flight reference arrives, a new MSHR is 

allocated and the reference is sent to the bank 

buffer. The bank buffer corresponds directly to 

the pending reference storage in Figure 4, 

although the storage for all of the internal 

DRAM banks is combined into one 32 entry 

buffer. The memory controller schedules DRAM 

accesses to satisfy the pending references in the 

bank buffer and returns completed accesses to 

the MSHRs. The MSHRs send completed loads 

to the reply buffer where they are held until they 

can be sent back to the reorder buffers. As the 

name implies, the reorder buffers receive out of 

order references and transfer the data to the SRF 

in order. 

In this streaming memory system, memory 

consistency is maintained in two ways: 

conflicting memory stream references are issued 

in dependency order and the MSHRs ensure that 

references to the same address complete in the 

order that they arrive. This means that a stream 

load that follows a stream store to overlapping 

locations may be issued 

as soon as the address generators have sent all 

of the store’s references to the memory banks. 

For the simulations, it was assumed that the 

processor frequency was 500 MHz and that the 

DRAM frequency was 125 MHz.3 At this 

frequency, Imagine has a peak computation rate 

of 20GFLOPS on single precision floating point 

computations and 20GOPS on 32-bit integer 

computations. Each memory bank controller has 

two external NEC mPD45128163 SDRAM chips 

attached to it to provide a 

column access width of 32 bits, which is the 

word size of the Imagine processor. These 

SDRAM chips were briefly described earlier and 

a complete specification can be found in [13]. 

The peak bandwidth of the SDRAMs connected 

to each memory bank controller is 500MB/s, 

yielding a total peak memory bandwidth of 

2GB/s in the system. 

 

B. Benchmarks 

The experiments were run on a set of  

microbenchmarks and five media processing 

applications. Table 2 describes the 

microbenchmarks above the double line, and the 

applications below the double line. 

 

Table2.Benchmarks.

 
For the microbenchmarks, no computations 

are performed outside of the address generators. 

This allows memory references to be issued at 

their maximum throughput, constrained only by 

the buffer storage in the memory banks. For the 

applications, the simulations were run both with 

the applications’ computations and without. 

When running just the memory traces, 
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dependencies were maintained by assuming the 

computation occurred at the appropriate times 

but was instantaneous. The applications results 

show the performance improvements that can be 

gained by using memory access scheduling with 

a modern media processor. The application 

traces, with instantaneous computation, show the 

potential of these scheduling methods as 

processing power increases and the applications 

become entirely limited by memory bandwidth. 

V. Experimental Results 

A memory controller that performs no access 

reordering will serve as a basis for comparison. 

This controller performs no access scheduling, as 

it uses an in-order policy, described in Table 1, 

for all decisions: a column access will only be 

performed for the oldest pending reference, a 

bank will only be precharged if necessary for the 

oldest pending reference, and a row will only be 

activated if it is needed by the oldest pending 

reference. No other references are considered in 

the scheduling decision. This algorithm, or slight 

variations such as automatically precharging the 

bank when a cache line fetch is completed, can 

commonly be found in systems today. 

The gray bars of Figure 6 show the 

performance of the benchmarks using the 

baseline in-order access scheduler. 

Unsurprisingly, unit load performs very well 

with no access scheduling, achieving 97% of the 

peak bandwidth (2GB/s) of the DRAMs. The 3% 

overhead is the combined result of infrequent 

precharge/activate cycles and the start-

up/shutdown delays of the streaming memory 

system. 

The 14% drop in sustained bandwidth from 

the unit load benchmark to the unit benchmark 

shows the performance degradation imposed by 

forcing intermixed load and store references to 

complete in order. Each time the references 

switch between loads and stores a cycle of high 

impedance must be left on the data pins, 

decreasing the sustainable bandwidth. The unit 

conflict benchmark further shows the penalty of 

swapping back and forth between rows in the 

DRAM banks, which drops the sustainable 

bandwidth down to 51% of the peak. The 

random benchmarks sustain about 15% of the 

bandwidth of the unit load benchmark.  

 
The QRD and MPEG traces include many 

unit and small constant stride accesses, leading 

to a sustained  andwidth that approaches that of 

the unit benchmark. The Depth trace consists 

almost exclusively of constant stride accesses, 

but dependencies limit the number of 

simultaneous stream accesses that can occur. The 

FFT trace is composed of constant stride loads 

and bit-reversed stores. The bit-reversed accesses 

sustain less bandwidth than constant stride 

accesses because they generate sequences of 

references that target a single memory bank and 

then a sequence of references that target the next 

memory bank and so on. This results in lower 

bandwidth than access patterns that more evenly 

distribute the references across the four memory 

banks. Finally, the Tex trace includes constant 

stride accesses, but is dominated by texture 

accesses which are essentially random within the 

texture memory space. These texture accesses 

lead to the lowest sustained bandwidth of the 

applications. 

1. First-ready Scheduling 

The use of a very simple first-ready access 

scheduler improves performance by an average 

of over 25% on all of the benchmarks. First-

ready scheduling uses the ordered priority 

scheme, as described in Table 1, to make all 

scheduling decisions. The first-ready scheduler 

considers all pending references and schedules a 

DRAM operation for the oldest pending 

reference that does not violate the timing and 

resource constraints of the DRAM. The most 

obvious benefit of this scheduling algorithm over 
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the baseline is that accesses targeting other banks 

can be made while waiting for a precharge or 

activate operation to complete for the oldest 

pending reference. This relaxes the serialization 

of the in-order scheduler and allows multiple 

references to progress in parallel. 

 
 

Figure 6. Sustained memory bandwidth using in-order and first-

ready access schedulers (2 GB/s peak supplied bandwidth). 

 

Figure 6 shows the sustained bandwidth of the 

in-order and first-ready scheduling algorithms 

for each benchmark. The sustained bandwidth is 

increased by 79% for the microbenchmarks, 17% 

for the applications, and 40% for the application 

traces. As should be expected, unit load shows 

little improvement as it already sustains almost 

all of the peak SDRAM bandwidth, and the 

random benchmarks show an improvement of 

over 125%, as they are able to increase the 

number of column accesses per row activation 

significantly. 

 

 
Figure 7. Sustained memory bandwidth of memory access scheduling 

algorithms (2 GB/s peak supplied bandwidth). 

 

2. Aggressive Reordering 

When the oldest pending reference targets a 

different row than the active row in a particular 

bank, the first-ready scheduler will precharge 

that bank even if it still has pending references to 

its active row. More aggressive scheduling 

algorithms are required to further improve 

performance. In this section, four scheduling 

algorithms, enumerated in Table 3, that attempt 

to further increase sustained memory bandwidth 

are investigated. The policies for each of the 

schedulers in Table 3 are described in Table 1. 

The range of possible memory access schedulers 

is quite large, and covering all of the schedulers 

examined in Section 3 would be prohibitive. 

These four schedulers were chosen to be 

representative of many of the important 

characteristics of an aggressive memory access 

scheduler. 

Table 3. Reordering scheduling algorithm policies. 

 

 
 

Figure 7 presents the sustained memory 

bandwidth for each memory access scheduling 

algorithm on the given benchmarks. These 

aggressive scheduling algorithms improve the 

memory bandwidth of the microbenchmarks by 

106-144%, the applications by 27-30%, and the 

application traces by 85-93% over in-order 

scheduling. 

VI. Related Work 

Stream buffers prefetch data structured as 

streams or vectors to hide memory access latency 

[7]. Stream buffers do not reorder the access 

stream to take advantage of the 3-D nature of 

DRAM. For streams with small, fixed strides, 

references from one stream tend to make several 

column accesses for each row activation, giving 

good performance on a modern DRAM. 

However, conflicts with other streams and non-

stream accesses often evict the active row, 

thereby reducing performance. McKee’s Stream 

Memory Controller (SMC) extends a simple 

stream buffer to reduce memory conflicts among 

streams by issuing several references from one 

stream before switching streams [6] [11]. The 

SMC does not reorder references within a single 

stream. 

The Command Vector Memory System 

(CVMS) [2] reduces the processor to memory 

address bandwidth by transferring commands to 

the memory controllers, rather than individual 
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references. A command includes a base and a 

stride which is expanded into the appropriate 

sequence of references by each off-chip memory 

bank controller. The bank controllers in the 

CVMS utilize a row/closed scheduling policy 

among commands to improve the bandwidth and 

latency of the SDRAM. The Parallel Vector 

Access unit (PVA) [10] augments the Impulse 

memory system [1] with a similar mechanism for 

transferring commands to the Impulse memory 

controller. Neither of these systems reorder 

references within a single stream. Conserving 

address bandwidth, as in the CVMS and PVA, is 

important for systems with off-chip memory 

controllers, but is largely orthogonal to memory 

access scheduling. 

The SMC, CVMS, and PVA do not handle 

indirect (scatter/gather) streams. These 

references are usually handled by the processor 

cache, as they are not easily described to a 

stream prefetching unit. However, indirect 

stream references do not cache well because they 

are large and lack both spatial and temporal 

locality. These references also do not typically 

make consecutive column accesses to the same 

row, severely limiting the sustainable data 

bandwidth when those references are satisfied in 

order. The memory access scheduling techniques 

described here work for indirect streams as well 

as for strided streams, as demonstrated by the 

improvements in the random benchmarks and the 

Tex application. 

VII. Conclusions 

Memory bandwidth is becoming the limiting 

factor  in achieving higher performance, 

especially in media processing systems. 

Processor performance improvements will 

continue to outpace increases in memory 

bandwidth, so techniques are needed to 

maximize the sustained memory bandwidth. To 

maximize the peak supplied data bandwidth, 

modern DRAM components allow pipelined 

accesses to a three-dimensional memory 

structure. Memory access scheduling greatly 

increases the bandwidth utilization of these 

DRAMs by buffering memory references and 

choosing to complete them in an order that both 

accesses the internal banks in parallel and 

maximizes the number of column accesses per 

row access, resulting in improved system 

performance. 

Memory access scheduling realizes significant 

bandwidth gains on a set of media processing 

applications as well as on synthetic benchmarks 

and application address traces. A simple 

reordering algorithm that advances the first ready 

memory reference gives a 17% performance 

improvement on applications, a 79% bandwidth 

improvement for the microbenchmarks, and a 

40% bandwidth improvement on the application 

traces. The application trace results give an 

indication of the performance improvement 

expected in the future as processors become 

more limited by memory bandwidth. More 

aggressive reordering, in which references are 

scheduled to increase locality and concurrency, 

yields substantially larger gains. Bandwidth for 

synthetic benchmarks improved by 144%, 

performance of the media processing 

applications improved by 30%, and the 

bandwidth of the application traces increased by 

93%. 

A comparison of alternative scheduling 

algorithms shows that on most benchmarks it is 

advantageous to employ a closed page 

scheduling policy in which banks are precharged 

as soon as the last column reference to an active 

row is completed. This is in part due to the 

ability of the DRAM to combine the bank 

precharge request with the final column access. 

There is little difference in performance between 

scheduling algorithms that give preference to 

row accesses over column accesses, except that 

the col/closed algorithm can sometimes close 

pages too soon, somewhat degrading 

performance. Finally, scheduling loads ahead of 

stores improves application performance for 

latency sensitive applications.Contemporary 

cache organizations waste memory bandwidth in 
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order to reduce the memory latency seen by the 

processor. As memory bandwidth becomes more 

precious, this will no longer be a practical 

solution to reducing memory latency. Media 

processing has already encountered this 

phenomenon, because streaming media data 

types do not cache well and require careful 

bandwidth management. As cache organizations 

evolve to be more conscious of memory 

bandwidth, techniques like memory access 

scheduling will be required to sustain a 

significant fraction of the available data 

bandwidth. Memory access scheduling is, 

therefore, an important step toward maximizing 

the utilization of the  increasingly scarce memory 

bandwidth resources. 
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