
Co2Cloud: A Consistency Model for Collaborative Works on Cloud
နေမာတႆဗုဓ္ဒ

Yin Nyein Aye, Thinn Thu Naing
University of Computer Studies, Yangon

yinnyeinaye.ptn@gmail.com, thinnthu@gmial.com

Abstract

 Consistency maintenance is an important
issue in collaborative work systems that are
activated in both traditional distributed system
and cloud system. Collaborative Works are
computer based systems that support groups of
people engaged in a common task (or goal) and
that provide an interface to a shared context.
Consistency maintenance of shared documents
under the constraints of short response time and
support for free and concurrent editing in
distributed environment is one of the
fundamental and challenging issues. In this
paper, we describe a consistency model for
constructing collaborative software development
on cloud.

1. Introduction

 Cloud computing (CC) is a computing
technology that uses the Internet and central
remote servers to maintain data and applications.
CC allows people to use applications without
installing them on their computers and allows
access to saved files from any computer with an
Internet connection. CC technology involves
more efficient computing by centralizing storage,
memory, processing and bandwidth to
simultaneously work on a project-regardless of
their location because the services and storage
are provided over the Internet (or cloud).
 An emerging class of cloud-based
collaborative services, such as online document

processing provides users with anywhere
available and concurrent access to shared state.

Collaborative work (CW) means that group
works in a common task. It is used mainly in the
business settings and is now aided by computers,
which is known as computer supported
collaborative work (CSCW). Its purpose is to
facilitate group communication and productivity
[4]. Nowadays, the implementation of CSCW on
cloud is a challenging issue among researchers in
various fields such as artificial intelligence,
computer science, network communication,
distributed systems and so on. Shared objects are
replicated on different sites. Each user works on
his own copies. This implies the divergence of
different copies. The convergence of data on
different copies does not necessarily mean a
consistent state. CSCW applications may have a
huge variation in requirements for reliability and
consistency. Moreover, the consistency of the
data not only depends on the local operations but
also on the operations taken on the other copies.
 Many types of consistency over the past 30
years and a wide variety of consistency models
have been explored in the computer science
research community, many of these are tried to
specific implementations. Frequently, one needs
to understand how a system operates in order to
understand what consistency it provides in what
situations. The need for different consistency
levels is depended on in a variety of applications.
This paper is reported not all data needs to be
treated at the same level of consistency and use
cases in which consistency could be applied. [10]

 There are so many consistency models for
Cloud based Applications. These are the
following consistency models;
• Google App Engine Datastore- read-your-
writes eventual consistency
• Amazon S3 storage -eventual consistency
• Azure Table and Blob Storage -strong data
consistency
• SimpleDB- Monotonic Write Consistency,
Inter-Element Consistency
 Many cloud data storage platforms (or
particular operations within a platform) use
techniques to achieve high availability and low
latency that avoid two-phase commit and/or
synchronous access to a quorum of sites. [15]
Thus they can’t guarantee strong consistency. In
the cloud environment, replicated architecture is
widely adopted in collaborative systems which
are to meet the requirement of high
responsiveness. Shared documents are replicated
at the local storage of each collaborating site, so
that operations can be performed at local sites
immediately and then propagated to remote sites.
Most of the collaborative applications require
several functionalities. [6] First, better
coordination among users, there should be
mechanisms so that users are generally aware of
what other participants are doing. Second, a
concurrency control mechanism should be
provided for keeping the shared data consistent
even though users may attempt to make
simultaneous, conflicting changes. Third,
because of the interactive nature of a
collaborative application, it should ensure
interactive response time to users' actions while
maintaining shared data consistency. In
distributed systems describes alternative
consistency models (e.g., eventual consistency,
read-write monotonicity, or session consistency).
[13]
 This research will address the problem of
consistency by proposing a model which
considers on software development. The

remaining paper is structured as follows. Section
2 presents proposed system architecture, section
3 explains consistency model for target scenario
and section 4 describes related work. Finally,
section 5 addresses the conclusion and future
work.

2. Proposed System Architecture

 As Figure1 shows collaborative works on
cloud consists of four parts.
1) Developing Workgroup: developers in
different areas prepare writing code together and
give different views on the same topics.
2) Management Workgroup: managers in
different roles collaborate with each other to
work which make them to cooperate with others.
3) Outsourcing Workgroup: Developers in
outsourcing complete the task with connection of
managers which manage the task to finish
successful.

C
ha
ng
es

C
hanges

C
h
a
n
g
e
s

Figure1. System Architecture

4) Shared storage: developers, managers and
developers in outsourcing are encouraged to
complete the task with consistent state.
 Multiple views of software development can
be synchronously, semi-synchronously and

asynchronously edited by different developers.
View versions can be incrementally merged, and
view updates broadcast to other developers and
incrementally incorporated as required in their
alternative versions. Consistency management is
required to keep all of these views consistent
under change.

Figure2.View editing on cloud

 Developers may create and modify new
versions of a component based on their current
version. The current version (i.e. new changes
are locked out) and allows it to be exported for
other developers to use. Another developer may
subsequently import and merge. Figure 2
illustrates editing and merging approach to
collaborative development on cloud. Developer 1
edits data (denoted by A1') and Developer 2 edits
data (denoted by A2'). Developer 3 also edits
data (denoted by A3’), so they can modify it at
the same time. After updating, developer 1, 2 and
3 freeze their edit data. In cloud environment, the
last edit data (A1’, A2’, A3’) is exported for
other developers to use.

 Basic workflow of software development on
cloud is shown on figure 3.
1) First, developer retrieve data that he/she want
to edit from cloud.
2) Edit the data.
3) When he/she wants to upload his/her edited
data, first he/she must check to data on cloud
storage that may be changed by other persons.

 Figure3.Basic Workflow of software
development on cloud

4) Merge data from cloud storage and edited
data.
5) Complete task to send cloud.

3. Consistency Model

 Maintaining consistency within a single
database node is relatively easy for most
databases. The real problems start to surface
when you try to maintain consistency between
multiple database servers.[13] Collaborative
Editing allows people to work simultaneous on
the same document or source base (e.g., Google
Docs, Version control, Wiki’s). The main
functionality of such a system is to detect
conflicts during editing and to track the history of

changes. Traditionally such systems work with
strong consistency. Most parts of the document
which are frequently updated by several persons
would be best handled by strong consistency
guarantees to avoid conflicts all together. If a
client makes a write operation on server A, we
do not make sure that this is consistent with
server B, or C, or D. Therefore, distributed
shared systems are designed as different
consistency models to achieve high performance
of operations on shared data. Consistency models
for shared data are often hard to implement
efficiently in large-scale distributed systems.
Moreover, in many cases simpler models can be
used which are also often easier to implement.

 At the time t+1, the user interacts with the
application at site 1 (“op1”) and it transitions to a
new state. To maintain consistency, site 2 must
also transition to a new state which is consistent
with that of site 1. We could either apply an
operation “op2” to the old state of site 2 or a
mapping “map2” to the new state of site 1. [9]
 A consistency model is a contract between
processes and the data store. It says that if
processes agree to obey certain rules, the store
promises to work correctly. We need to consider
how consistency is actually implemented. Two
issues play a role to keep consistent. The first
issue is the actual distribution of updates and
how updates are propagated. The second issue is
how data items are kept consistent. In most
cases, applications require a strong form of
consistency. There are various alternatives for
implementing consistency. [14]

3. 1 Consistency Model for target scenario

 In the target scenario, a shared document is
replicated at multiple sites connected by cloud.
The user at each site can update his/her local data
by issuing add, delete and undo operations
anytime and anywhere. Local updates are
executed immediately for fast response time. We
want the results of operation performed to be
consistent possibly being read and update
concurrently by many developers. Two main
operations are considered: Read and Write. The
Read operation represents a query over the
contents. The Write operation updates data. A
Write may involve creating, modifying or
deleting data items.

Figure4. Target Scenario

 In the figure 4, it is important that write
operations are propagated in the correct order to
all copies of the data store. A write operation by
a developer on a data item (A) is completed
before any successive write operation on A by
the same process (i.e. a wrote operation on a

copy of data item is performed only if that copy
has been brought up to date by mean of any
preceding write operation, even if taken place on
another copy of A.
 Consider a single source code file containing
10 functions. The developer1 updates function
number 1 at developing work group. Then
developer 2 updates function number 7 in
management group. Each of these updates
represents a different version. The developer1
should observe the changes to function1 in
source code. If an update is performed on a copy,
all preceding updates will be performed first. The
monotonic-write consistency resembles data-
centric FIFO consistency. The essence of FIFO
consistency is that write operations by the same
process are performed in the correct order
everywhere. But monotonic write consistency is
used for a collection of concurrent processes.
 If a single data item is written in on location
then a new value of that single data item is
written in a different location, then this problem
doesn't really occur. Monotonic-write
consistency is shown in Figure 5. In this target
scenario for updating software source code (SC)
performs a write operation on local copy (lc1) at
developer 1 site presented as the operation Write
(lc1).SC performs another write operation on lc2
at developer 2 site, shown as Write (lc2). And
then SC also performs another write operation on
lc3 at developer 3 site, described as Write (lc3).
 By using monotonic write consistency, it is
shown that a write operation by a SC process on
a local data item local copy (lc) is completed
before any successive write operation on lc by
the same process. It implies a copy must be up to
date before performing a write on it. Write
operations by the same process are performed in
the same order no matter where that operation
was initiated.

Figure5. Monotonic-write Consistency

3.2 Algorithm for Monotonic Consistency
Model

 Monotonicity means that if xi yi for all i,

then fop(x1; : : : ; xk) fop(y1; : : : ; yk). It satisfies

a weaker but natural consistency condition,
called monotonic consistency. A write operation
by a process on a data item x is completed before
any successive write operation on x by the same
process.

Definition 1
 A task is a set of data in cloud. Suppose M is the
set of total data in cloud and Ti is a subset task of
M. Suppose there are t tasks t1,t2,…,tn total in
cloud and M is the set of total data then

 (1)

Table1. Definition of Notations

Notation Definition

op Operation
k Input
fop Function of operation
S Number of update operations
d Number of data items
v Value

In table 1 is shown by the definition of notations
for monotonic consistency algorithm.

Algorithm: Monotonic Consistency

1. procedure Update(op)
2. begin
3. Let x1,....xd be the inputs to op.
4. for i 1 to d do

5. yi Read(xd)

6. end
7. Write (op,fop(y1,...,yd)
8. end

9. procedure Write(op,v)
10. begin
11. Write(op,v)
12. Let op1,..,opi be update operations
13. for i 1 to S do

14. Update(opi)
15. end
16. end

17. procedure Read(op)
18. begin
19. return Read(op)
20. end

 In figure 6 is shown to complete the task with
monotonic write consistency. Developer 2 starts
working on a class PASSAGE. He/she get data
as a local copy from Co2Cloud. Co2Cloud
displays the class current version at developer 2
site. And then he/she starts modifying the class.
In the meanwhile developer 1 starts working on

the same PASSAGE class. Co2Cloud makes
integration the two write operations by two
developers. There is no need for complex
communication because of using monotonic
write consistency both developers are aware of
which parts have been changed.

Figure6. Co2Cloud

4. Related Work

 Distributed consistency constraints either
ensure strong consistency or weaken the
consistency in small intervals which in turn can
lead to inconsistencies. A great deal of work has
been done on distributed consistency constraint
and limited divergence of replica. In this paper
[14] develops and analyzes a transaction
management and replication protocol based on
implementation of the Paxos with Combination

and Promotion (Paxos-CP) that provides true
consistency. In [3] describes four per-session
guarantees are proposed to aid users and
applications of weakly consistent replicated data.
These session guarantees present individual
applications with a view of the database that is
consistent with their own actions, even if they
read and write from various, potentially
inconsistent servers. Google’s BigTable [5]
provides eventual consistency guarantees.
Recently, some research efforts have been
focused on providing stronger guarantees:
Yahoo’s PNUTS [7] provides monotonicity
guarantees and snapshot isolation on a per-record
basis.
 Grove [2], ORESTE [9], COAST [12] and
DECAF [13] use optimistic concurrency control
with system guaranteed state consistency. The
ORESTE algorithm considers a shared document
consisting of a set of objects, which are fully
replicated at all the participating processes. Each
event modifies exactly one shared object.
Locally generated timestamps are used to order
all the events and information about community
and masking of events is used to minimize
rollback.
 Many papers have described particular
architectures and algorithms for consistency. In
this paper [15] describes what kinds of
inconsistency are seen in the results returned
from operations, and how frequently these
situations arise. As previously mentioned, most
collaborative applications are used in only
distributed computing. CC allows people to use
applications without installing them on their
computers and allows access to saved files from
any computer with an Internet connection. So we
propose a consistency model for constructing
collaborative software development on cloud to
complete the task with fast access and without
conflict.

5. Conclusion and Future Work

 The developers are tried to express their tasks
by using only monotonic operations to handle
each changing the set of possible situations and
what the code must be written in this target
scenario to keep consistency. This paper has
addressed the importance of efficiency when
designing a consistency algorithm for use in
software development on cloud. We propose an
algorithm that is more efficient and suitable for
use in this research. For future work, we are
planning to further investigate issues concerning
consistency and system performance.

References
[1] E.A. Brewer. “Towards robust distributed systems

(abstract)”, in: PODC Conf., ACM, Portland,
OR,USA, 2000, pp. 7.

[2] C. A. Ellis and S. J. Gibbs. “Concurrency control
in groupware systems”. In Proceedings of the
ACM SIGMOD'89, pages 399–407, 1989.

[3] D.B. Terry, A. J. Demers, K. Petersen, M. J.
Spreitzer, M. M. Theimer,and B. B. Welch,
"Session Guarantees for Weakly Consistent
Replicated Data" ,Computer Science
Laboratory,Xerox Palo Alto Research Center
Palo Alto, California.

[4] G.Convertino, U.Farooq, M.B Rosson, and J.M.
Carroll. “Old is Gold: Integrating Older Workers
in CSCW”, Proceedings of the 38th Hawaii
International Conference on System Sciences,
2005, pp. 1-10.

[5] F. Chang et al. “ Bigtable: A Distributed Storage
System for Structured Dat”a. In Proc. of OSDI,
pages 205–218, 2006.

[6]G.DeCandia,D.Hastorun,M.Jampani,G.Kakulapati,
A.Lakshman, A.Pilchin,S. Sivasubramanian,
Peter Vosshall and Werner Vogels, "Dynamo:
Amazon’s Highly Available Key-value
Store",SOSP’07, October 14–17, 2007,
Stevenson, Washington, USA.

[7] B. F. Cooper et al. “PNUTS: Yahoo!’s hosted data
serving platform”. In Proc. of VLDB, volume 1,
pages 1277–1288, 2008.

[8] S.Greenberg and D.Marwood , “ Real Time
Groupware as a Distributed System: Concurrency
Control and its Effect on the Interface”, In
Proceedings of the ACM Conference on

Computer Supported Cooperative Work, pp.207-
217 , Chapel Hill, North Carolina.

[9] A.Karsenty and M.Beaudouin-Lafon. “An
algorithm for distributed groupware
applications”. In Proceedings of the 13th ICDCS,
pages 195–202, 1993.

[10] T. Kraska, M. Hentschel, G. Alonso, D.
Kossmann. “ Consistency rationing in the cloud:
pay only when it matters”, Proceedings of the
VLDB Endowment (PVLDB) 2(1) (2009) 253–
264.

[11] I. Marsic*, X. Sun†, C. Correa*, and T. Liu‡
*Department of Electrical and Computer
Engineering and the CAIP Center Department of
Mathematics, ‡Rutgers Center for Operations
Research (RUTCOR) , “Maintaining State
Consistency Across Heterogeneous Collaborative
Applications” , Rutgers University, Piscataway,
NJ 08854.

[12] C.Schuckmann, L. Kirchner, J. Schummer, and J.
M. Haake. “Designing object-oriented
synchronous groupware with COAST”. In ACM
CSCW'96, 1996.

[13] A. Tanenbaum and M. van Steen. Distributed
Systems: Principles and Paradigms. Prentice
Hall, 2002

[14]S.Patterson,A.J.Elmore ,F.Nawab,D.Agrawal,A.El
Abbadi, “Serializability, not Serial: Concurrency
Control and Availability in Multi-Datacenter
Datastores”,August 27th - 31st 2012, Istanbul,
Turkey.

[15] H.Wada, A.Feketez, L.Zhaoy, K.Lee and A.Liu,
“Data Consistency Properties and the Trade-offs
in Commercial Cloud Storages: the Consumers’
Perspective”,CIDR’11 Asilomar, California,
January 2011.

